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SCALE MODEL PATTERN MEASUREMENTS

OF AIRCRAFT L-BAND BEACON ANTENNAS

I. INTRODUCTION

The Technical Development Plan for DABS discus ses, under the heading

of design options [Ref. 1], the possibility of aircraft antenna diversity as a means

of ove rcoming the limitations on system performance arising from nulls in air

craft antenna patterns. Under Phase I of the DABS Development Plan it also

calls for a program of aircraft antenna pattern measurements [Ref. 2] with

special attention being given to general aviation aircraft for which little infor

mation is available.

Accordingly, a program was initiated at Lincoln Laboratory to obtain

these pattern data in the most convenient form for use in further studies. The

directional gain of aircraft antennas was to be measured over a complete

spherical surface with uniform density, and the number of measurements was

to be great enough so that all significant pattern data would be recorded.

These data must cover a variety of typical flight conditions (such as wheels

up, wheels down, and flaps up, flaps down, etc.). Various possible antenna

locations on the aircraft should be used so that comparisons can be made as

to the relative suitability of the position considered. Clearly, diversity

schemes must be based on such comparative data •

1



II. DESCRIPTION OF EQUIPMENT AND MEASUREMENTS TECHNIQUES

There are many reasons, which will not be enumerated here, that it is

impractical to make antenna measurements on a full scale aircraft. Consider-

ing the position apparatus, which was available to hold the model aircraft at

accurately known angular coordinates while the measurements are made, it

appeared that the maximum dimension of the model should not exceed about

30 inches. Consideration of actual dimensions of general aviation aircraft

indicated that a scale factor of 1/20 would be suitable. Since the actual fre-

quency of the proposed DABS system is 1060 ± 30 MHz, this means that the

pattern measurements must be carried out at 20 X 1060 = 21200 MHz = 21. 2

GHz (wavelength::::: o. 56"). Although the antenna gain itself is very low, the

whole aircraft (fuselage, wings, etc.) makes up a very complex antenna struc-

ture and, to assure that the measured patterns would be like those that would

be seen at "infinite distance II from the model aircraft, it was decided that the

distance separating the antenna, used to illuminate the model on the positioner,

should be large compared to 2D 2/A where D is the maximum dimension of the

model. Since D is approximately 30 inches, the required length of themax

antenna range is about 270 feet. The available range length of 2000 feet is

clearly more than adequate.

Through the cooperation of the manufacturers, loft line drawings were

obtained for the following types of general aviation aircraft:

The Lear Jet
Piper "Cherokee II 140
Shrike "Commander"
Cessna 150
Cessna "Cardinal"
Ces sna "402B"
Beech "Baron"

Beech "B -99"
Twin Otter
Helio VlOD
Grumman Gulfstream II

2



•

•

Scale models (1/20 scale) were obtained of each type. These models

have dimensional tolerance of ±O. 30" with rigging tolerance no greater than

±0.060". Thus the largest dimensional errors are just over ±O. 1 wavelength

and as such should be of negligible importance, since the pattern of a flying

aircraft is difficult, if not impossible, to define exactly due to surface flexures

and vibrational modes. The actual form of the aircraft is a function of time

and it may never exactly regain any form it had in the past.

The aircraft models have removable wheels (where appropriate) to sim

ulate wheels -up conditions and removable flaps. They also have hollow fuse

lages with several antenna locations at or near the upper and lower center

lines; these antenna locations are shown in more detail in Appendix A. In

addition to this an adapter plate is fixed on the top and bottom of the fuselage

to permit attaching the model to the positioner.

The site of the aircraft models during measurement was probed before

making any measurements and it was found that the field intensity was constant

within ±O. 1 dB over the area to be occupied by the aircraft model during mea

surement (see Fig. 1).

A simplified block diagram of the overall data gathering facility is shown

on Fig. 2. The analog-to-digital converters used for angle readout make use

of synchro-to-digital conversion having a stated accuracy of 0.01 degree and

a resolution of 0.01 degree. Thumbwheel offsets are provided as a conven

ient means of zeroing the readout to correspond to any desired reference angle.

The analog-to-digital converter used for amplitude ratio readout pro-

vides either logarithmic or linear outputs. With the logarithmic option, the selected

sampling has a dynamic range of 85 dB and an accuracy and resolution of read-

out of O. I dB. The associated tape recording system is shown on Fig. 3.
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Fig. 1. Aircraft model on antenna positioner 4
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The dual channel or phase amplitude microwave receiver (Scientific-

Atlanta Series 1750) has a dynamic range of 60 dB and amplitude accuracy of

±o. 25 dB. The output signal is modulated at 1000 Hz. The receiver supplies

isolated local oscillator power to two external mixers (in this application one

mixer is located in the aircraft model and the receiver accepts 45 MHz IF sig-

nals generated in these external mixers.

A description of the coordinate system and the detailed manner in which

pattern data are actually measured is shown in Fig. 4. The pole of the spheri-

cal coordinate system is the yaw axis of the aircraft. The <I> coordinate, and

angular rotation about the yaw axis, are then measured as indicated.

To record a complete data set, the antenna positioner was set so that

oe = 1 and <I> = O. The title word (described later) was first written on the tape.

The model was revolved about the yaw axis at a uniform speed and data were

sampled every 2 degree s in <1>. These data consist of e, <1>, and amplitude ratio

in dB. (This is the ratio of the signal received in the model aircraft antenna

to that received in the reference antenna.) Thus, 180 sets of angular and

amplitude data are recorded in the initial record. The record word is written

just after the title word, before the data were written. At this point the angle

<I> was stopped at zero and the angle e was advanced to 30
• The new record

word was written, followed by 180 sets of data words, and so on until 90 com-

plete records had been recorded. This resulted in 90 X 180 = 16200 points in

the complete spherical coverage for which data had been measured.

The description just given applies for top mounted antennas. Bottom

mounted antennas require that the model be mounted in the inverted position

on the antenna positioner. Therefore, the first record on the data file corre-

o 0
sponds to e = 179 and the 90th record corresponds to e = I •
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ep =0
0

(

~ep =900

~ INCIDENT FIELD
HORIZONTALLY
POLARIZED

l18-4-16998L

YAW AXIS OF AIC

~8 ep=180°

•

8= 1800

8 =2700 -----E----------",..=-------t-- 8 =900

Fig. 4. Model aircraft and tower georn.etry.
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III. DATA NORMALIZATION AND PROCESSING

This process edits out the unnecessary angle data and produces the

amplitude data in dB with respect to isotropic on a 9-track tape. Now each

file consists of a title word and 16200 words of amplitude data.

The normalizing process is a numerical integration described below:

Let X be a two-dimensional array containing all of the unnormalized ampli-mn
th th

tude data at the m value of <p and the n value of 8. Let there be N equal

intervals in the range of 8 between 0 and TT, and let there be M equal intervals

in <p between 0 and 2TT.

level,

Now, if A is the corresponding unnormalized powermn

•

X ron

A = 10 -nr
mn

and Ae = Nand A¢ = ~

The total radiated power is the sum of all contributions through each ele-

mentary unit area (sin 8 A e A <p)

M N

•• P t = L L Amn sin(~)(~) (~)
m= 1 n= 1

2 M N

=(~~) 2: 2 A mn sin(~)
m=l n=1
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and to determine the average power radiated per steradian of surface we

divide by 4rr

M N

< P > =(2~M) 2: 2: A mn sine~n
m= 1 n= 1

This is the isotropic level of the antenna radiation and in our case where

"N=90andM=180

180 90

< P >= (2X16~ 200t 2.. 2: A mn sin(~IT) .
m= 1 n= 1

Note that when the A r are all unity, <P> = unity also, as it must for an
mn s

isotropic radiator.

Now if~ mn represents the r'normalized" amplitude data expressed in dB
mn

and X the unnormalized data,
mn

x-- mn = X - 10 10glO <P> dBi.mn mn

The production of principal plane "omnidirectional" H plane, and E plane

cuts is clearly a very simple proces s when the normalized 9 -track data are

available (see Fig. 5a). It is important to take note of whether it is a top

mounted or bottom mounted antenna; then the omnidirectional data required

are either from the 45th or 46th record, i.e., at e = 89° or e = 91 0 • In the

complete file this corre sponds to data words from 2700 to 2880 or from 2880

to 3060, respectively. The E plane patterns are only slightly more involved.

All data for which <j> = 0.0
0

and <j> = 180.0
0

are required for the E -plane cut

10
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IATC-47(5) L
Fig. 5. Lear jet bottom-mounted front. flaps down. wheels up
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containing the wings (see Fig. 5b), and all data for which ep = 90
0

and ep = 270.0
0

are required for the E-plane cut containing the nose and tail (see Fig. 5c). A

complete set of principal plane patterns for those aircraft that were actually

measured (the measurements program was about 75% completed before being

stopped) is given in Appendix B.

Radiation density and contour plots are, in principle at least, quite

straightforward. There are available computer routines which, given data

measured at various points in a plane, can linearly interpolate and draw in

the contours of constant intensity. Such a program was used but, due to the

very large amount of data, the computing time was considered to be excessive

and unwarranted, considering the limited interest in this type of data presenta

tion. A very much simpler and cruder approximation to an accurate contour

plot is obtained by quantizing the data and printing out on a rectangular grid

the resulting data, going from left to right on each scan line and printing a

symbol only if the radiation level has shifted to some other quantized level.

While this is simple and required very little computer time, it does require

a great deal of patience and time to draw in the contour by hand later on. An

example of this process is given in Fig. 6.

Other applications of the data involving arbitrary maneuvers of the air

craft and the effective antenna gain to vertically-polarized radiation from a

beacon interrogator on the ground clearly involve coordinate transformation

and, since roll and pitch angles are permissible for the aircraft, cross

polarization losses must be accounted for. The cross-polarization correction

and coordinate transformations required are described in AppendiX C.

12
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NOSE

TAIL

l18-4-16993L

8=180°

(Reverse 8 scale for bottom-mounted antennas)

Fig. 6. Radiation density contours for the Lear Jet with
wheels up and flaps down and antenna in bottom. front position.
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Thus, when some situation is defined with aircraft coordinates relative

to a ground located radar, and aircraft velocity and roll angles are known, the

first step requires that e and <p be found and the corre sponding antenna data

must then be located. The cross -polarized correction is then added to obtain

the aircraft antenna gain for that particular set of conditions.

With the aid of the coordinate conversion, cross polarization correction

and data lockup subroutines, it is a relatively simple process to obtain the

effective aircraft antenna gain under any as sumed set of conditions. It is

assumed, of course, that the aircraft antenna is well matched to the receiver

or, if not, that allowance will be made for the mismatch. Ground reflections

complicate the overall picture of the transmission channel and in the following

multipath signals are ignored in the interest of simplicity. However, any

assumed multipath model could be incorporated in the procedure with the re

suIting increased complexity and computing time.

A useful application of the data could be a plot of the conditioned proba

bility that the antenna gain will be at least as great as x dBi versus x dBi under

a set of assumed conditions. For example, if the angle of elevation of a given

aircraft is fixed at a given value, the roll angle is equally probable between

given limits and the heading is also equally probable anywhere from zero to

360°; then such a graph of the cumulation probability can be plotted and it will

have considerable value in the assessment of the relative merit of possible

antenna locations and perhaps indicate whether or not antenna diversity is

needed. Figure 7 is such a result. Further applications and reduction of

the recorded data are described in Ref. 3.
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NOTE:

HEADING IS EQUALLY PROBABLE FROM 0 0 TO 360 0

ROLL ANGLE IS EQUALLY PROBABLE FROM
- 20 0 TO 200

1.0

0.9

0.8

>-
I- 0.7
...J
aJ
« 0.6aJ
0
0:
Q.

w 0.5
>
~ 0.4...J
:::>
~
:::>
u 0.3

0.2

0.1

0
-40 -30 -20 -10

GAIN(dBi)

o 10 20

Fig. 7. Typical probability distribution function for antenna gain.
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APPENDIX A

AIRCRAFT MODELS AND ANTENNA POSITIONS
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APPENDIX B

PRINCIPAL PLANE PATTERNS

Figures B. 1-1 to B. 11-11 show principal plane patterns extracted

from tape data for those aircraft that were actually evaluated (aircraft

numbers 1, ,2, 4, 7, 8, 10, and 11).
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APPENDIX C

CROSS-POLARIZATION LOSS AND COORDINATE CONVERSION

Figure 4 shows the model aircraft and tower geometry. The polariza-

tion vector lies in the plane defined by the yaw axis of the model aircraft and

the line joining the transmitter to the model aircraft. This happens to be the

horizontal plane in this case and this condition is maintained throughout the

whole measurement process. When an aircraft in flight receives radiation

from a vertically polarized antenna on the ground, there is correspondence

to the experimental setup as long as the aircraft is in straight and level flight.

However, any change in flying conditions involving rolling, climbing, or diving

will result in the polarization vector flying outside of the above mentioned

plane.

In vector notation the polarization vector p can be expressed as follows:
.... .

Let i be a unit vector in the axis of the transmittingz

dipole elements of a ground antenna

and pbe a unit vector in the line joining the origin of

coordinates in the aircraft to the point of observation,

i. e., the transmitting antenna on the ground

(
1 x-p~- z _

then p = x p
[( x PIz

where x signifies vector cross product.
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-Let i be a unit vector defining the yaw axis of the aircraft (and the air-yaw

craft antenna) and let N be a unit vector normal to the plane defined by pand-i yaw

then -N=

The fraction of the incident signal voltage which is sensed by the aircraft- -antenna is IN x r I, a quantity always less than or equal to unity. The other

component of p is cross -polarized and contributes nothing to the received sig-

nal. Therefore, in practical situations involving aircraft maneuvers, 20 loglO

INx 'PI should be added to the measured antenna directivity. This is one of

the quantities computed in a subroutine which also obtains the required co-

ordinate transformations described below.

Let XI' YI' 2 r be the target aircraft coordinates with respect to the

ground antenna. The positive directions of the corresponding axes are East,

- - -North and vertically up, respectively, and i , i , i are unit vectors on these
x y z

axes. Target information expressed in any other form can always be trans-

formed to fit the description.

Let £. m and n be direction cosines defining the unit vector on the

aircraft velocity vector, thus defining the aircraft heading in the horizontal

plane and the pitch angle. Heading will be defined as the clockwise angle

measured from North to the velocity vector and pitch is measured from the

horizontal plane to the velocity vector. It is positive if up and negative if

down.
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Let R be the roll angle of the aircraft. This is zero in straight and

level flight and is regarded as positive if the aircraft is rotated clockwise as

seen from the tail.

The coordinates of the aircraft relative to the ground antenna define

- -both p and p

- 1P =r=======-
, Ix 2+ y 2 + Z 2V· I I I

{ -X i -
I x

-
YI \ - Z i}I z

(i:x p)
Ii x;\z

1
=
" 1v-2 + y 2
~I I

The velocity vector roll angle defines the roll, pitch and yaw axes of

the aircraft

i is a unit vector on the yaw axis of the aircraft.yaw-iroll is a unit vector on the roll axis of the aircraft •
..-. -. ~ .......

:. i 11 = 1 i + m i + n i .ro x y z
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-Since the roll axis coincides with the velocity vector. i 't h is a unit vector
pI c

on the pitch axis of the aircraft. When the roll angle is zero

and when the roll angle can have any value

i h = ---;===1==:::::;- rem cos R - nisin R) i x -(1 cos R + nm sin R) i
ypitc ,I 2 2 L

Vm + R.

t cos R + m sin R) i - (nm cos R- 1. sin R) i
x y

)

2 2 -]+ (I + m ) cos R i z

The necessary steps to obtain the correction for cross polarization are now

obvious. Because of the cumbersome expressions involved, the results of the

vector eros s products will not be written in expanded form; but it is a simple

computer operation and needs no further description.
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The aircraft coordinate angles e and ¢ are now very simply obtained

as follows:

- -cos e· =i . pyaw

-I{- -}• e = cos i . p
yaw

tan ¢ = (p. t;itchj
- 7P • Iroll

- -
¢ = tan-II ~.. ~itCh j

Prall
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