Project Report
ATC-232

The ASR-9 Processor
Augmentation Card (9-PAC)

J.V. Pieronek

2 October 1995

Lincoln Laboratory

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LEXINGTON, MASSACHUSETTS

Prepared for the Federal Aviation Administration,

Washington, D.C. 20591

This document is available to the public through
the National Technical Information Service,

Springfield, VA 22161

This document is disseminated under the sponsorship of the Federal Aviation
Administration, Department of Transportation, in the interest of information
exchange. The U.S. Government assumes no liability for its contents or use thereof.

The first step in the map-update process involves the geocensor map, which uses the
smallest range-azimuth cell (1/16 nmi x 0.7°) of the three maps. The geocensor map requires a
large rate of radar-only reports to occur in a cell before the cell is declared active. Once a cell
has been declared active, however, it remains active for several days after the high rate of
detection drops. The long hold time is designed expressly for maintaining the map, which
consists principally of roads, over a four-day weekend, when traffic patterns tend to be less
intense than during working days [11]. Figure 6 shows a comparison between the geocensor
map used in a standard ASR-9 and a geocensor map generated by 9-PAC.

Figure 6. Comparison of geocensor maps for (a) standard ASR-9 and (b) ASR-9 with 9-PAC. The standard ASR-
9 map is binary, wherease the 9-PAC map has variable threshold levels (as indicated by the color bar in
relative dB). Note 9-PAC’s increased detail of the roads just inside the 10-nmi range ring.

Targets that were not flagged by the geocensor map while passing through C&I are used to
update the fine-grain adaptive thresholds. The fine-grain thresholds are stored in an x-y map
with cells that are H nmi x H nmi. The fine-grain map, which adjusts the detection thresholds
used by the C&I process, responds to lower detection rates than does the geocensor map. As
the detection rate increases, the threshold also increases. Unlike the geocensor map, the
threshold-update function in the fine-grain map does not require the detection rate to persist for
a long time, nor does the fine-grain map keep the threshold values heightened for a long time
after the detection rate has dropped. An influence region for each cell in the fine-grain map is
defined as a square that is 1 nmi x 1 nmi centered on the cell (Figure 7). All targets falling in a
cell’s influence region are used to update the cell’s histogram. This process gives a cell
“advance notice” of slow-moving clutter like bird flocks and weather that might be present in
adjacent cells.

M

Adaptive-
threshold
cell

Influence
region

Figure 7. Adaptive-threshold cell (1/2 nmi x 1/2 nmi) and influence region (1 mi x 1 mi) used to update the fine-
grain map. All targets falling in a cell’s influence region are used to update the cell's histogram.

Targets that were not flagged by the fine-grain map while passing through C&I are used to
update the coarse-grain map. The process used to update the coarse-grain map is identical to
that used to update the fine-grain map, with a few exceptions. The resolution of the coarse-
grain map is 2 nmi x 2 nmi. The area of influence is correspondingly larger: 4 nmi x 4 nmi.
Also, the coarse-grain map responds to even lower detection rates than does the fine-grain
map. Lastly, the coarse-grain map has shorter persistence and hold times than does the fine-
grain map.

For an example of how the maps work together, we consider a flock of birds. As the birds
take flight together, they will first cause the coarse-grain map to respond quickly by raising its
thresholds, thus leading to the birds being censored. If the flock of birds is small and dense, the
flock will next cause a smaller section of the fine-grain map to respond by raising its
thresholds. Once the birds are being censored by the fine-grain map, the returns that they
generate will no longer be supplied to the update process for the coarse-grain map and the
coarse-grain thresholds will drop back to their original levels. This example can be extended to
a construction site or highway interchange that would pass through the coarse- and fine-grain
steps and eventually trigger a response by the geocensor map. Using this three-step process,
9-PAC provides an initial rapid response to the clutter, then localizes the clutter to as small an
area as possible to lessen its impact on the surrounding area.

Enhancements to BTD

The beacon interrogation system uses a sophisticated method of multiple-pulse
interrogation with directional and omnidirectional antenna patterns to minimize the chance of
eliciting a response from an aircraft that is not in the main beam of the antenna pattern.
Unfortunately, this system cannot prevent interrogations from being reflected in other
directions by objects in the path of the antenna’s main beam. In the example shown in Figure
8, interrogations are reflected off a building, causing an aircraft to be interrogated twice per
antenna revolution—once when the antenna is pointed directly at the aircraft, and another time
when the antenna is pointed at the building and the interrogation (and transponder reply) is
reflected off the building. The aircraft will thus appear on the controller’s screen in two
places—one target appears in the correct location, the other target appears in the direction of the
building at a slightly longer range than the actual range because of the longer path that the
signal follows when it is reflected [12].

12

Figure 8. Example of an error caused by an interfering object. Beacon interrogations from the radar are
reflected off a building, causing an aircraft to be interrogated twice per antenna revolution - once when the
antenna is pointed directly at the aircraft, and another time when the antenna is pointed at the building an the
interrogation (and transponder reply) is reflected off the building. The aircraft will thus appear on the
controller’s screen in two places.

Because the transponder system is able to identify individual aircraft, a straightforward
approach to solving reflection problems would be to store the range of all aircraft that are
interrogated so that, when two aircraft with the same beacon identifier appear at different
locations during the same antenna scan, the target with the greater range can be deleted as the
target generated by reflection. This solution, however, presents two difficulties. First, not all
beacon identifiers are unique. Because ID codes in the 1200s (e.g., 1207, 1235, 1262) and any
code ending in 00 can be assigned to multiple general-aviation aircraft, targets with these codes
cannot be removed from the display. Second, tests have shown that even the discrete codes that
are supposed to be assigned to only one commercial aircraft at a time are occasionally assigned
to multiple aircraft because the hardware can support only 4096 possible codes; i.e., not all
discrete codes are truly unique. Thus a considerably more complicated algorithm is required to
solve reflection problems.

To handle nondiscrete codes, we must construct a map of known reflectors by using
information gleaned from reflections involving discrete-code aircraft. Once the locations of
reflectors are known, we can check each aircraft against the map to determine if the aircraft is
real or if it fits the geometry for a reflection. This test works for both discrete and nondiscrete
codes. To resolve the case of multiple aircraft transmitting the same discrete code (and also
flying at the same altitude), the BTD algorithm checks for the existence of a primary-radar
report of a spatially matching target for the suspect duplicate code. If a corresponding primary-
radar report is found, indicating that the aircraft is, in fact, really there, the BTD algorithm will
not generate a reflector-map entry based on the target geometry of the multiple identical
discrete codes, nor will the suspect reflected targets be deleted. A feedback path from the
Radar-Beacon Merge function to the BTD is used to inform the beacon processing software
that a matching primary report has been found.

13

But a further difficulty can arise with the use of reflector maps. If a large aircraft is parked
such that its tail becomes a reflector, the aircraft will be saved in the reflector map and will
remain in the map even after the vehicle has moved. Two maps are used to remedy such
situations: a temporary map and a permanent map. The temporary map stores reflectors as
they are discovered. New reflectors that remain for a period of twenty-four hours are promoted
to the permanent map. Once a reflector has been placed in the permanent map, it can be
removed only after it has not been observed for a period of twenty-one days.

As mentioned earlier, when two or more aircraft are in the same vicinity, interference of
their transponder replies can produce garbled reports. In areas of high traffic density,
particularly in areas where aircraft are making parallel runway approaches, garble is a constant
problem. The original ASR-9 BRP and BTD take only moderate steps to deal with garble.
Although not specifically cited as a problem with the ASR-9, garble had to be addressed to
make the beacon reflection code more robust.

Garble can be dealt with in a number of ways. The easiest method attempts to unscramble
garble by using adjacent codes. For example, when two aircraft are making a parallel approach
to an airport, the aircraft may appear, from the radar’s vantage point, to be side by side. As the
beam of the interrogator antenna sweeps past the two aircraft, the beam may encounter only
one of the aircraft at first, then both of the aircraft, and finally only the second aircraft. In such a
scenario, the transponder returns will start with clear (ungarbled) replies from the first aircraft
alone, followed by garbled replies resulting from the simultaneous interrogation of both
aircraft, and finally clear replies from the second aircraft alone as the first aircraft passes out of
the beam. If there are enough clear codes at the beginning and end of the reply stream, we can
re-create the actual replies from the two aircraft and determine the correct centroid for each
vehicle.

Data collected at several locations around the United States have shown that the above
adjacent-code method will not correct all garble cases. For instance, garble that is not detected
as such by the BRP can cause replies to be erroneously split into two reports, creating a report
for a nonexistent aircraft. Thus a more robust method was developed to handle cases of garble
that do not fit the simple scenario described above.

The new method requires the use of a separate beacon tracker that maintains tracks of
targets whose ID codes are known. When garbled replies are received they are checked against
this track map to determine if they closely match an existing track in that geographic vicinity.
When a match is found, the garbled code is corrected and the processing continued. This track-
matching method is considerably more expensive than the adjacent-code method described
earlier because of the tracker’s computational demands and memory requirements for storage
of the tracks.

Enhancements to Radar-Beacon Merge

The Merge function in the ASP compares incoming radar reports with a list of non-merged
beacon reports and, for a given radar report, will generate a merged report with the first beacon
report that is found to fall within a specified rectangle, or association box, around the given
radar report. An identical process is used to compare incoming beacon reports against a list of
radar reports. This method can create an incorrect merge when there is more than one potential
match in the association box. In an extreme case, the identification tags for two aircraft flying
in parallel may hop between two aircraft. The 9-PAC Merge function seeks the best match

14

within the association box by using a modified Munkres algorithm [13]. The algorithm uses a
scoring approach to determine the best match with geographic proximity carrying the highest
weight.

Special processing was added to the Merge function to deal with beacon reports generated
by the BTD function that were flagged as false targets caused by reflections. If a beacon report
has been flagged as a false target caused by reflection from a permanent reflector (a
“supported” report), Merge will drop the report. If the flagged beacon report merges with a
radar report, both reports will be deleted. Even if the flagged beacon report is not supported by
a permanent reflector, the report will be dropped if it does not merge with a radar report. But, if
an unsupported (i.e., not supported by a permanent reflector) flagged beacon report merges
with a radar report, Merge will turn off the false-target flag, output the report as a radar-beacon
merged report, and send a message back to the BTD process to indicate that the beacon target
has been merged with a radar target. As described in the subsection “Enhancements to BTD,”
this information is used by BTD to determine whether an ID code has been assigned to
multiple aircraft.

Enhancements to Tracker

The original ASR-9 Tracker was designed to accommodate targets with a maximum
turning rate of 0.5G. Military aircraft, however, are capable of turning rates of considerably
higher G. There are two problems with tracking these highly maneuverable targets. First, the
original radar performed most of its tracking by using a polar r-g coordinate system
corresponding to the range-azimuth radar data because the ASP does not have the
computational capacity necessary to convert all target reports to an x-y coordinate system. The
r-q system is acceptable for aircraft flying several miles away from the radar, but it has trouble
handling high-speed targets flying near the radar site. For example, if a high-speed aircraft
were flying due west and flew over the radar site (i.e., the origin of the r-g system), the
azimuth of the aircraft would change almost instantaneously from 90° to 270°. Second, the
ASR-9 Tracker uses geographic association boxes to match incoming target reports with
existing tracks. Tracking highly maneuverable targets requires the use of larger association
boxes to handle the larger space of potential movement for a given target. The larger
association boxes entail larger searches of the target and track databases, for which more
processing power is necessary.

The 9-PAC Tracker is a full x-y tracker that utilizes conventional tracking in both
coordinates. Parameters are adjusted automatically to deal with variations in report quality,
track history, and track residual history. (Note: A residual is the difference between the
predicted and actual location of a target.)

In the 9-PAC Tracker, the track-initiation process generates more trial tracks than the
original tracker, and this enhancement can lead to the introduction of more false tracks and to
the inclusion of false alarms in existing tracks. To mitigate these problems, we added several
additional tests to the 9-PAC Tracker to prevent false-alarm reports from generating tracks or
adding false information to existing tracks. A velocity and acceleration test is used to determine
whether a target is moving in accordance with a simple model of aircraft performance. In
addition, the correlation step in the 9-PAC Tracker uses a scoring mechanism to associate
targets with tracks. The correlation step incorporates the quality and confidence information in
the radar reports, and checks for agreement between the radial component of the tracked
velocity and the radial Doppler velocity that is derived from the Doppler velocity estimates

15

from each of the two CPIs in the report. As mentioned earlier, these velocity estimates are
limited by the maximum unambiguous Doppler velocity for each CPI (approximately 69
nmi/hr). Because the ratio of the maximum unambiguous velocities of the two CPIs is fixed at
7:9, the radial Doppler velocity can be computed by applying the Chinese remainder theorem
to the two CPI velocity estimates in the report. This estimate of radial velocity has a range of
approximately +600 nmi/hr.

A feature was added to the 9-PAC Tracker to deal with collimation error—the difference in
target location as reported by the radar and beacon systems. By default, the ASR-9 selects the
radar report’s range and azimuth to use in a merged report. If a track that has had radar reports
should miss a radar report and receive only a beacon report, the range and azimuth from the
beacon report are used in the output. If the system contains collimation error, the tracked
beacon-only report will reflect the discrepancy in that the track will appear to jump on the
controller’s screen. For such cases, the 9-PAC Tracker adjusts the range and azimuth values of
the tracked beacon-only report to compensate for the collimation error. Collimation statistics
are calculated during the formation of radar-beacon merged reports. Figure 9 is a comparison
of the output from the standard ASR-9 tracker compared with the 9-PAC tracker for the same
input dataset.

16

. R LA
L]
10 L .
i f
- >
ofs, secs e, f
- Missing o :
g 5 Data & s]
£ . s
.
;9', : ... i
% . o.
(a) g 0 -‘. — I.
o se”® L]
= L]
— L]
@ L)
g sqlecesccesassl
&]
B» 5F ®o0, , -
5 F® 0 o .'ﬂ.:-::"‘ .-.

o Clutter .

.".l. w .o spgan®?

10 F . .:'-:‘..‘-"".. 0 e,
- o ..-.- e .. -
P L R Eﬂ*"" l .".l':. --:
[i i i i L C1|Ut-.16-—-r-.“l i " 1‘: i i i A | - 1..‘ |. L i A A i i

I v T Y Te ¥ T T T T 'y T Y r T T v T §9 ° —
ﬂ..' 4
-’.. .f ® F
. '.. “-.{.
* 1ssmg§&-, i " 1
10g. Data & » , ¥ . v 7
. ee *® . e 4
» ° .=' 0." r . .‘
- . L]] oon!l-f.

Missing .

w

Data

Missing
Data ;
T e 1 « Both
N A a ¥
Y o]+ 9-PAC

(b)

(4]

Distance from sensor (nmi)
o

Froons
""-':':':',_ | N7
T, ¢ Clutter

®e LI T,

10 F — ”..'-::?"“'"'--..-
of ..Clutte_r...o-"'"" *e, .-'
'—t—d—a—|_l__m’ i ro— s g PR 2 PR T ST
15 10 5 0 5 10 15

Distance from sensor (nmi)

Figure 9. Comparison of primary-radar performance: (a) ASR-9 production unit and (b) 9-PAC output for the
same 20-min set of data obtained at the Albuquerque, New Mexico, site. Note how 9-PAC enabled the
rejection of clutter and enhancement of track detection.

17

4. 9-PAC HARDWARE

Once a basic set of algorithmic solutions to the major problems in the system had been
determined, we needed to find a way to enhance the ASP’s computing capability because the
ASP was running near capacity in terms of memory and processor utilization. Several means
were considered to achieve this enhancement.

An obvious option was to add a powerful workstation external to the system and use
specialized hardware to connect the workstation to the ASP. One problem with this solution
was that it would have been difficult for the ASR-9 processor to obtain complete control of the
external hardware because most workstations are designed to operate autonomously.
Furthermore, space where the workstation could operate undisturbed would be needed in the
radar shelter.

Another option considered was the addition of a small computer chassis inside the ASR-9
receiver/processor cabinet where the ASP resides. Again, specialized hardware would have to
be built to connect the new processor to the system. A computer of this sort would be much
more suited to the operational environment of the ASR-9, and the ASR-9 would have
complete control over such a machine. The problem with this option was that it would have
taken considerable effort to install such a computer.

A third option was to replace the ASP completely with a set of custom processing cards
that would fit into the same slots in the card cage. Unlike modern computers, however, the
backplane wiring that connects the ASP cards together does not consist of a uniform bus that
connects the same pins together on each of the cards. Instead, the ASP backplane is point-to-
point wired with a specialized interface between each card. Thus use of the existing wiring was
considered very difficult. But removal of the ASP altogether meant that any modifications
would have to duplicate fully the current functionality of the ASP; i.e., a large software effort
would be required.

Because the three options considered required the construction of specialized hardware, we
began studying the ASP schematics to see if there was a way to add a processor without
disabling the ASP. Our investigation quickly focused on DPRAM1 and DPRAM?2 because of
several factors: the two boards are identical, they are each 7.5 in x 11.3 in, and, by current
standards, they contain a small amount of memory. Each DPRAM board uses almost 60 in2
to hold 64 integrated circuits (IC) containing a total of 128 kB. With current technology, the

same 128 kB of memory can be supplied by a single IC that occupies less than 1 inZ of space
on a circuit board.

Having found as much as 120 in? of space that could be used for adding components on
the two DPRAM boards, we investigated the next task of finding a way for the ASP to
communicate with the added processor. Because the ASP already had access to the memory
on both DPRAM1 and DPRAM2, all that was needed was another port to this memory, thus
making it multi-ported, to allow the ASP to communicate with the added processor (Figure
10).

19

Figure 10. Multi-port random-access memory (RAM) with added components used in 9-PAC. This board was
used to replace DPRAM2.

There are several benefits to this approach. First, should the added processor fail, the new
board containing the processor could still function as a dual-port memory board; i.e., if the
ASP determines that the added processor is not operating properly, the post-processor could
return to the original operating mode and keep running. Another benefit is that, because
DPRAM?2 receives all of the radar and beacon input from the DSP and BRP directly via the
HSIB, the added processor could also access these data directly if it were inserted in the
DPRAM2 slot. Thus, by replacing DPRAM2 with a multi-port RAM that has an added
processor connected to the additional memory port, we could provide additional processing to
assist or augment the existing ASP without removing or disturbing the ASP. Hence the new
board containing the multi-port RAM and added processor was named the ASR-9 Processor
Augmentation Card, or 9-PAC.

Design Goals

Once we decided to replace DPRAM2, we sought ways to make the new board as versatile
as possible. Our objective was to place the maximum amount of processor power and
memory on 9-PAC, and to add several high-speed interfaces to allow for data recording and
future expansion. Non-volatile memory was needed for storing the software and the various
maps and databases used by the algorithms. In addition, a means for inexpensively loading
new software into 9-PAC was required.

Hardware Realization

A standard ASR-9 printed-circuit board has about 68 in? of usable space on one side. With
current surface mount technology (SMT) components, a redesign of the DPRAM portion of 9-
PAC uses only 12 in? of board space. The remaining 56 inZ of space is clearly sufficient for
several large ICs. In addition, if thin small outline packages (TSOP), which are about 2 mm
thick, were used for the memory components, the components could be placed on the back
side of 9-PAC to increase board capacity further.

20

Of the many microprocessors and digital signal processor (DSP) chips available, we chose
the Texas Instruments TMS320C40 processor for our design [14]. The main reasons for this
choice were that the *C40 performs floating-point math at a peak of 40 million operations per
second, and the chip has built-in high-speed data links for communicating directly with as
many as six other *C40s, thus enabling a multi-processor design.

As work progressed on the 9-PAC design, we realized that there was enough room on the
board to fit three processors with at least 9 MB of memory per processor. Figure 11 shows a
block diagram of 9-PAC, and the following paragraphs describe the board’s major features in
reference to the block diagram.

Pairs of communications links—built-in high-speed serial ports capable of peak transfer
rates of approximately 26 MB/sec—interconnect the three *C40 processors. Although each
communications link is bidirectional by design, we use the links unidirectionally by pairing
them going in opposite directions. Unidirectional operation makes the software simpler and
also avoids known problems associated with changing the direction of data transfer in a link.

Each *C40 has 1 MB of zero-wait-state static random-access memory (SRAM) connected
to one of the processor’s two memory buses. The 1-MB SRAM holds processing stacks and
other data structures that need to be accessed frequently. Each *C40 also has a bank of dynamic
random-access memory (DRAM) chips to hold the program code and data that do not need to
be accessed frequently. Two of the *C40s have 8 MB of three-wait-state DRAM and the third
*C40 (processor 3) has 16 MB of DRAM. Processor 3 requires this extra memory for map
storage to run the geocensor-mapping function. To compensate somewhat for the slow
DRAM used to store software, the *C40 has an on-board instruction cache.

All peripheral devices on the board are connected to processor 1, which is often referred to
as the “housekeeping” processor. Processor 1 is responsible for booting up the 9-PAC,
running diagnostics, and communicating with the ASP and any other devices connected to the
peripheral ports. The peripherals and special memories connected to processor 1 are

« The multi-port RAM that provides an interface to the ASP and the HSIB or
MIP. The software running in processor 1 can access this memory directly.

« A 64-kB electrically programmable read-only memory (EPROM) that contains
start-up diagnostics and the bootstrap code.

« 4 MB of flash memory (a form of electrically erasable non-volatile memory).
The 4-MB flash memory can be used to hold the software that is loaded into the
three processors, and can also be used to hold a history of
modifications/revisions to the board.

« A Personal Computer Memory Card International Association (PCMCIA) card
socket. A 20-MB solid state flash-memory disk card containing the software
that the bootstrap program in EPROM loads into the three processors is
normally plugged into this socket.

» Four high-speed serial ports that are capable of data rates up to 2 MB/sec. Two

of the serial ports have RS-232 drivers and receivers; the other two have RS-
422 differential drivers and receivers. The high-speed serial ports can be used

21

for a variety of purposes, for example, to provide a data path to a workstation
for recording input and output data as the data pass though the system. Other
possible uses include expansion to add a satellite clock and a Surveillance
Advanced Message Format (SAMF) output for direct communication to the
FAA'’s Advanced Automation System (AAS).

« A bank of eight light-emitting diodes (LED) for conveying status information,
and nine switches for configuring board options in software.

The diagnostic interfaces of the *C40 processors conform to the IEEE 1149.1 Joint Test
Action Group (JTAG) [15]. The JTAG standard allows all of the processors to be connected
by a few signal lines for diagnostic and debugging functions. A debugger and program loader
can be connected to 9-PAC by a small connector at the front edge of the board. Via this JTAG
port, the debugger has complete access to all of the 9-PAC’s processors, memories, and
peripherals.

{ 16-MB DRAM

Serial port

munications link

1-MB SRAM

LEDs and switches

Figure 11. Block diagram of 9-PAC. Processor 1, which is often referred to as the “housekeeping”
processor, is responsible for booting up the 9-PAC, running diagnostics, and communicating with the ASP and
any other devices connected to the peripheral ports.

22

All of 9-PAC’s glue logic is contained in five Lattice Semiconductor ispLSI in-circuit
programmable logic devices (PLD) [16]. Three of the ispLSI devices are used as DRAM
controllers, one for each *C40 processor’s DRAM,; the fourth ispLSI device controls the multi-
port RAM interface; and the fifth controls all other peripheral devices. Unlike conventional
PLDs, which must be inserted into a programmer to be programmed, the ispL.SI devices are
programmed in-circuit by a PC via a cable that plugs into a connector on 9-PAC. This feature
allows the devices to be soldered in place instead of being socketed, and also makes it very
simple to modify the programmable logic when necessary.

9-PAC is a 12-layer printed-circuit board with components—almost entirely SMT
devices—on both sides of the board (Figure 12). 9-PAC has been manufactured by outside
vendors and by Lincoln Laboratory’s printed-circuit fabrication facility. The cost of 9-PAC
with all parts installed is less than $10,000, and the cost of just the 9-PAC board without parts
is approximately $1000.

When power is applied to the 9-PAC board, processor 1 immediately begins running the
program stored in the EPROM. This program contains a diagnostic that tests the functionality
of most of the board’s components. If a failure occurs, the diagnostic will halt and an error
code will flash on the 9-PAC LEDs. When 9-PAC has passed the diagnostic without any
failures, the program stored in the EPROM will load software from a PCMCIA flash-memory
disk card into all three processors’ memories. The flash disk is also used to load and update the
various maps described in the section “9-PAC Radar and Beacon Processing Algorithms.” If
the 9-PAC software has to be upgraded in the field, the flash disk is simply replaced.

System Software and Development Process

Software development began simultaneously on the four main algorithm areas—BTD,
C&I, Merge, and Tracker. The initial algorithms were written in ANSIC on Sun
Microsystems workstations. A diagnostic tool called X-Windows Radar Analysis Package
(XRAP) was used to test the algorithms with data collected at the Los Angeles and Salt Lake
City ASR-9 sites. XRAP can record various combinations of the primitive report data that
enter the ASP as well as the completed reports that the ASP sends to the MIP. With these data,
we could test the new algorithms to see if they indeed corrected the existing problems without
introducing new ones.

While the 9-PAC algorithms were under development, engineers at the FAA Technical
Center wrote a specification consisting of data formats, communications protocol, and
dedicated memory areas for the transfer of data between the ASP and 9-PAC via the multi-port
memory. The engineers then modified the code in the ASP and the ASR-9’s remote
maintenance system (RMS) to operate with 9-PAC. Using the modified code, the ASP looks
for 9-PAC at start-up. If a 9-PAC board is found, the ASP configures itself to communicate
with the new board. If a 9-PAC board is not found, the ASP operates using its standard
software. The ASP also monitors the functioning of 9-PAC and, if a problem is detected, the
ASP can decide to shut 9-PAC down and revert to standard operating mode in which only
9-PAC’s multi-port RAM feature is used.

23

I, e e
; 4 = c_,,', u;._aé . ¢ ‘ wumr:nm-ggff

dsd 6y

n
= =4]

< T

17

S oy

’oéh a J}_@n:L!LUI_Q_Eij_bWJ

S reorndy

lﬂ e

RS ESEET

RS R0
J
WETRETE,
g

(]

>

PEECRREREEEEEEERbERERESEEELS L
20 ? 80 90 99
97942-645A670102 156503 93

Figure 12. Photograph of 9-PAC.

Figure 14. Typical display from the Pacview program on a workstation screen.

29

The FAA Technical Center has also tested 9-PAC in a test version of the ASR-9. One of
the initial runs in that system produced a dataset from which we first observed instances of
multiple aircraft that had been erroneously assigned the same discrete identifier code. As a
result of these observations, we modified the BTD and Merge algorithms to prevent 9-PAC
from deleting such aircraft.

In other experiments, Westinghouse Electric Corp. has been testing 9-PACs in an ASR-9
that is connected to the production test equipment that was used to test the original ASR-9.
Errors in report formatting were discovered in the initial testing at Westinghouse. These errors
were reported to the staff at Lincoln Laboratory in Lexington, where the code was then
corrected. The corrected code was then sent to Westinghouse over the Internet. Subsequent
capacity testing at Westinghouse revealed that the BTD algorithm could not keep up with the
target load under the worst-case conditions set forth in the ASR-9 specification. This discovery
led to a profiling analysis of the BTD code and resulted in an overhaul of the database
organization of the BTD internal tracker. Again the Lincoln Laboratory staff modified and
updated the code over the Internet. The new code runs fast enough to pass the capacity tests
with some additional margin to allow for increasing the code’s functionality in the future.

At this time, a noncommissioned ASR-9 at the Philadelphia Airport is being prepared to
perform real-time evaluation of the phase 1 9-PAC. After the conclusion of these tests, 9-PAC
will be installed on a trial basis at several of the airports that have been experiencing the
problems that prompted the board’s development.

30

