Publications
How deep neural networks can improve emotion recognition on video data
Summary
Summary
We consider the task of dimensional emotion recognition on video data using deep learning. While several previous methods have shown the benefits of training temporal neural network models such as recurrent neural networks (RNNs) on hand-crafted features, few works have considered combining convolutional neural networks (CNNs) with RNNs. In this...
Sparse-coded net model and applications
Summary
Summary
As an unsupervised learning method, sparse coding can discover high-level representations for an input in a large variety of learning problems. Under semi-supervised settings, sparse coding is used to extract features for a supervised task such as classification. While sparse representations learned from unlabeled data independently of the supervised task...
Cross-domain entity resolution in social media
Summary
Summary
The challenge of associating entities across multiple domains is a key problem in social media understanding. Successful cross-domain entity resolution provides integration of information from multiple sites to create a complete picture of user and community activities, characteristics, and trends. In this work, we examine the problem of entity resolution...
Joint audio-visual mining of uncooperatively collected video: FY14 Line-Supported Information, Computation, and Exploitation Program
Summary
Summary
The rate at which video is being created and gathered is rapidly accelerating as access to means of production and distribution expand. This rate of increase, however, is greatly outpacing the development of content-based tools to help users sift through this unstructured, multimedia data. The need for such technologies becomes...
NEU_MITLL @ TRECVid 2015: multimedia event detection by pre-trained CNN models
Summary
Summary
We introduce a framework for multimedia event detection (MED), which was developed for TRECVID 2015 using convolutional neural networks (CNNs) to detect complex events via deterministic models trained on video frame data. We used several well-known CNN models designed to detect objects, scenes, and a combination of both (i.e., Hybrid-CNN)...
Social network analysis with content and graphs
Summary
Summary
Social network analysis has undergone a renaissance with the ubiquity and quantity of content from social media, web pages, and sensors. This content is a rich data source for constructing and analyzing social networks, but its enormity and unstructured nature also present multiple challenges. Work at Lincoln Laboratory is addressing...
Individual and group dynamics in the reality mining corpus
Summary
Summary
Though significant progress has been made in recent years, traditional work in social networks has focused on static network analysis or dynamics in a large-scale sense. In this work, we explore ways in which temporal information from sociographic data can be used for the analysis and prediction of individual and...
Face recognition despite missing information
Summary
Summary
Missing or degraded information continues to be a significant practical challenge facing automatic face representation and recognition. Generally, existing approaches seek either to generatively invert the degradation process or find discriminative representations that are immune to it. Ideally, the solution to this problem exists between these two perspectives. To this...