Publications
New generation of digital microfluidic devices
Summary
Summary
This paper reports on the design, fabrication, and performance of micro-sized fluidic devices that use electrowetting to control and transport liquids. Using standard microfabrication techniques, new pumping systems are developed with significantly more capability than open digital microfluidic systems that are often associated with electrowetting. This paper demonstrates that, by...
Graphene-on-insulator transistors made using C on Ni chemical-vapor deposition
Summary
Summary
Graphene transistors are made by transferring a thin graphene film grown on Ni onto an insulating SiO2 substrate. The properties and integration of these graphene-on-insulator transistors are presented and compared to the characteristics of devices made from graphitized SiC and exfoliated graphene flakes.
New methods to transport fluids in micro-sized devices
Summary
Summary
Applications of microfluidics require a self-contained, active pumping system in which the package size is comparable to the volume of fluid being transported. Over the past decade, several systems have been developed to address this issue, but either these systems have high power requirements or the microfabrication is too complex...
Characterization of a three-dimensional SOI integrated-circuit technology
Summary
Summary
At Lincoln Laboratory, we have established a three dimensional (3D) integrated circuit (IC) technology that has been developed and demonstrated over eight designs, bonding two or three active circuit layers or tiers to form monolithically integrated 3D circuits. This technology has been used to successfully demonstrate a large-area 8 x...
Epitaxial graphene transistors on SiC substrates
Summary
Summary
This paper describes the behavior of top-gated transistors fabricated using carbon, specifically epitaxial graphene on SiC, as the active material. Although graphene devices have been built before, in this paper, we provide the first demonstration and systematic evaluation of arrays of a large number of transistors produced using standard microelectronics...
Irreversible electrowetting on thin fluoropolymer films
Summary
Summary
A study was conducted to investigate electrowetting reversibility associated with repeated voltage actuations for an aqueous droplet situated on a silicon dioxide insulator coated with an amorphous fluoropolymer film ranging in thickness from 20 to 80 nm. The experimental results indicate that irreversible trapped charge may occur at the aqueous-solid...
Low voltage electrowetting using thin fluoroploymer films
Summary
Summary
This paper investigates the nonideal electrowetting behavior of thin fluoroploymer films. Results are presented for a three phase system consisting of: (1) an aqueous water droplet containing sodium dodecyl sulfate (SDS), (2) phosphorous-doped silicon topped with SiO2 and an amorphous fluoroploymer (aFP) insulating top layer on which the droplet is...
Engineering of the electrocapillary behavior of electrolyte droplets on thin fluoropolymer films
Summary
Summary
This study presents methods for engineering the electrocapillary behavior of fluoropolymer surfaces through the use of surfactants and an external insulating liquid. By the scaling of the appropriate surface energies, electrocapillary behavior is obtained at a record low voltage, with contact angle changes in excess of 100[degrees] at 4 V...