Publications

Refine Results

(Filters Applied) Clear All

Study of Network Expansion LLWAS (LLWAS-NE) fault identification and system warning optimization through joint use of LLWAS-NE and TDWR data

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

Low level wind shear has been identified as an aviation hazard which has caused or contributed to a significant number of aircraft accidents (Soffer, 1990). To protect aircraft from hazardous wind shear, the Federal Aviation Administration (FAA) developed a system called the Low Level Wind Shear Alert System (LLWAS), containing a collection of anemometers as well as data processing logic (Wilson and Gramzow, 1991). The LLWAS has undergone several advancements in both design and algorithmic computation. The latest deployment, known as the Network Expansion Low Level Wind Shear Alert System (LLWAS-NE), consists of additional sensors to the original LLWAS network, providing better coverage of the airfield. In addition, the LLWAS-NE is capable of providing runway-oriented wind shear and microburst alerts with loss and gain values. The alerts from LLWAS-NE will be integrated with those from the Terminal Doppler Weather Radar (TDWR) and the Integrated Terminal Weather System (ITWS) at locations where all systems are available (Cole, 1992; Cole and Todd, 1994). An analysis was undertaken at Orlando (MCO) and Dallas/Ft. Worth (DFW) International Airports to assess the accuracy of wind shear alerts produced by LLWAS-NE and the TDWR/LLWASNE integration algorithm. Identifying improvements that can be made to either system is important, as LLWAS-NE alert information is anticipated to be integrated with ITWS in an ITWS/LLWAS-NE integration algorithm. As currently specified, the ITWS/LLWAS-NE integration algorithm will work the same as the TDWR/LLWAS-NE version. The ITWS/LLWAS-NE algorithm is an area where additional work is necessary to ascertain if the integration parameters should be modified to account for performance differences between the ITWS and TDWR algorithms. We suggest that ongoing assessment of the LLWAS-NE should use both LLWAS-NE data and TDWR base data, when possible. Comparing both data sets also will facilitate optimization of LLWAS-NE parameters used in the computation of the alerts.
READ LESS

Summary

Low level wind shear has been identified as an aviation hazard which has caused or contributed to a significant number of aircraft accidents (Soffer, 1990). To protect aircraft from hazardous wind shear, the Federal Aviation Administration (FAA) developed a system called the Low Level Wind Shear Alert System (LLWAS), containing...

READ MORE

The benefits of using NEXRAD vertically integrated liquid water as an aviation weather product

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

Over the past five years in which the Integrated Terminal Weather System (ITWS) testbed prototypes have been operational, there have been regular discrepancies noticed between the ASR–9 six–level precipitation product and the NEXRAD six–level maximum composite reflectivity product. (1. The NEXRAD composite product used in this study is the NEXRAD maximum composite reflectivity product which both the FAA and the ITWS use for weather data.). At the three prototypes in Memphis, Orlando and Dallas, staff have recognized that in certain situations the NEXRAD composite reflectivity product, which is the ITWS 100 and 200 nm long–range product, can be as much as three Video Integrator and Processor (VIP) levels higher than the ASR–9 precipitation product. This situation has caused some confusion for users of the ITWS system and concern on the part of system safety monitors. The confusion occurs because the two products do not agree with each other. Rhoda and Pawlak (1998) show that more aircraft will deviate around cells of ASR–9 VIP level 4 or greater than will penetrate them. There is also an aviation rule–of–thumb that pilots and air traffic specialists use which states cells of VIP level 3 or greater should be avoided if possible. This rule is a good guide but cannot be applied to the NEXRAD composite product. While the NEXRAD composite may show a cell with an intensity of level 3 or 4, the cell may contain very little of the higher–intensity precipitation while the bulk of the cell contains only level 2. This problem is magnified in the winter months when bright–band effects contaminate the radar data. Clutter [especially anomalous propagation (AP)] contamination of the composite reflectivity product is also a concern (especially when the AP is adjacent to actual weather returns). Differences between the two products will become more apparent with the fielding of the new ITWS situation display which has the capability of displaying both NEXRAD composite reflectivity and ASR–9 data side by side. In this study, we compare the NEXRAD composite reflectivity product with data from both the ASR–9 weather channel and an ASR–9 mosaic product as well as a Vertically Integrated Liquid water (VIL) product generated from NEXRAD base data.
READ LESS

Summary

Over the past five years in which the Integrated Terminal Weather System (ITWS) testbed prototypes have been operational, there have been regular discrepancies noticed between the ASR–9 six–level precipitation product and the NEXRAD six–level maximum composite reflectivity product. (1. The NEXRAD composite product used in this study is the NEXRAD...

READ MORE

Thunderstorm induced gravity waves as a potential hazard to commercial aircraft

Author:
Published in:
8th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 10-15 January 1999.

Summary

Under certain atmospheric conditions, thunderstorm development can induce a phenomenon known as gravity waves (i.e., buoyancy or density waves). These waves are characterized by alternating regions of convergence and divergence over a relatively short distance. Such aerodynamic shear can become hazardous to air traffic if the shear contained within the waves surpasses the threshold for air traffic safety. Gravity waves are particularly hazardous because they develop in seemingly benign weather surrounding the parent thunderstorm and in many cases are not associated with any visual storm feature. Several cases have been studied in which commercial aircraft have encountered gravity waves and have been adversely affected by their encounters. The purpose of this study is to show how gravity waves can have a detrimental effect on aircraft in flight, how gravity waves can be detected, and that need for a detection algorithm exists. With the development of the National Weather Service's Next Generation Radar (WSR–88D NEXRAD) and the Federal Aviation Administration's Terminal Doppler Weather Radar (TDWR), the ability to detect gravity waves exists near many of America's major airports. Since gravity waves are a low–level phenomenon (generally below 2 km), their presence should be of interest to aircraft in the takeoff and landing stages of flight. During operations at Lincoln Laboratory's Integrated Terminal Weather System (ITWS) prototype field site in Dallas, there have been at least two incidents in which commercial aircraft experienced wind shear of at least 40 knots on takeoff, possibly caused by single or multiple gravity wave bands. This study will look at 57 cases of gravity wave formation within the terminal areas of Dallas–Ft. Worth International, Memphis International, and Orlando International airports. Statistics will be compiled to determine the frequency and severity of the gravity waves as well as their duration. The study will include Pilot Reports (PIREPS) from a few of these cases in which aircraft experienced wind shear due to suspected encounters with gravity waves. It is the hope of the author that this study will lead to the development of a detection algorithm that will increase the safety of America's commercial air traffic.
READ LESS

Summary

Under certain atmospheric conditions, thunderstorm development can induce a phenomenon known as gravity waves (i.e., buoyancy or density waves). These waves are characterized by alternating regions of convergence and divergence over a relatively short distance. Such aerodynamic shear can become hazardous to air traffic if the shear contained within the...

READ MORE

The Terminal Convective Weather Forecast demonstration at the DFW International Airport

Published in:
8th Conf. on Aviation, Range, and Aerospace Meteorology (ARAM), 10-15 January 1999.

Summary

The FAA Convective Weather Product Development Team (PDT) is tasked with developing products for convective weather forecasts for aviation users. The overall product development is a collaborative effort between scientists from MIT Lincoln Laboratory (MIT/LL), the National Center for Atmospheric Research (NCAR), and the National Severe Storms Laboratory (NSSL). As part of the PDT, MIT/LL is being funded to develop algorithms for accurately forecasting the location of strong precipitation in and around airport terminal areas. We began by consulting with air traffic personnel and commercial airline dispatchers to determine the needs of aviation users. Users indicated that convective weather, particularly line storms, caused the most consistent problems for managing air traffic. These storms are by far the major cause of aircraft delays and diversions. MIT/LL has already developed the Integrated Terminal Weather System (ITWS) which combines a variety of near-airport sensors to provide a wide range of current weather information to aviation users. Raytheon is currently building the production ITWS system which will be deployed at 45 major airports by 2003. The initial capability ITWS already provides some convective weather predictive capabilities in the form of storm motion vectors and "Storm Extrapolated Positions" (SEP; leading edge of storm at 10 and 20 minutes). But ITWS users indicated a desire for enhanced forecasts which showed the full spatial extent of the weather, how the weather would change (grow or decay) and extended forecast time periods to at least out one hour. Our approach is to develop an algorithm which may be added as a future product improvement to the ITWS system. Previous attempts at producing forecasts have focused on convective initiation and building from short-term (20-30 min) cell forecasts. Our "reverse time" approach of attacking longer time scale (60 min) features first is an outgrowth of addressing user needs and the discovery of improved tracking techniques for large scale precipitation features. The "Growth and Decay Tracker" developed by MIT/LL (Wolfson et.al., 1999) allows us to generate accurate short and long term forecasts of large scale precipitation features. This paper details the Terminal Convective Weather Forecast (TCWF) demonstration ongoing at Dallas/Ft. Worth International Airport (DFW) and discusses the underlying algorithm being developed.
READ LESS

Summary

The FAA Convective Weather Product Development Team (PDT) is tasked with developing products for convective weather forecasts for aviation users. The overall product development is a collaborative effort between scientists from MIT Lincoln Laboratory (MIT/LL), the National Center for Atmospheric Research (NCAR), and the National Severe Storms Laboratory (NSSL). As...

READ MORE

Aircraft Vortex Spacing System (AVOSS) initial 1997 system deployment at Dallas/Ft. Worth (DFW) Airport

Published in:
MIT Lincoln Laboratory Report NASA-L-3

Summary

The potential hazard of aircraft encounters with the wake turbulence of preceding aircraft requires the use of minimum separations on landing that are a significant constraint on airport arrival capacity during instrument flight rules (IF) conditions. The National Aeronautics and Space Administration (NASA) Langley Research Center has been researching the development of the Aircraft Vortex Spacing System (AVOSS) which would dynamically change aircraft arrival separations based on the forecasted weather conditions and vortex behavior. An experimental AVOSS test system has been constructed at DFW airport and includes a large set of meteorological instruments, wake vortex sensors from three organizations, and an aircraft data collection system. All of this data are relayed to a central processing center at DFW for processing by automated meteorological data fusion algorithms and by NASA vortex behavior predictions software. An initial deployment and test of the DFW system was conducted during a three-week period in September/October of 1997. This document describes the overall system, the Lincoln-deployed sensors, including the Continuous-Wave Coherent lidar, and the meteorological data collection and processing system. Algorithms that were used to process the data for scientific use are described, as well as the conditions of the data collection and the data formats, for potential users of this database.
READ LESS

Summary

The potential hazard of aircraft encounters with the wake turbulence of preceding aircraft requires the use of minimum separations on landing that are a significant constraint on airport arrival capacity during instrument flight rules (IF) conditions. The National Aeronautics and Space Administration (NASA) Langley Research Center has been researching the...

READ MORE

Global validation of single-station Schumann resonance lightning location

Published in:
J. Atmos. Sol.-Terr. Phys., Vol. 60, No. 7-9., May-June 1998, pp. 701-712.

Summary

Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of an individual SR transients. An analysis of 40 such transients suggests that single-station techniques can locate lightning globally with an accuracy of 1-2 Mm. This is confirmed by further validation at close ranges from flashes detected by the National Lightning Detection Network (NLDN). Observations with both OTD and SR systems may be useful for globally locating lightning with necessary, if not sufficient, characteristics to trigger mesospheric sprites.
READ LESS

Summary

Global measurements of large, optically bright lightning events from the Optical Transient Detector (OTD) satellite are used to validate estimates of lightning location from single-station Schumann resonance (SR) data. Bearing estimates are obtained through conventional magnetic direction-finding techniques, while source range is estimated from the range-dependent impedance spectrum of an...

READ MORE

Performance characteristics of an algorithm used to remove anomolous propagation from the NEXRAD data

Published in:
28th Conf. on Radar Meteorology, 7-12 September 1997, pp. 317-319.

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed and tested an algorithm that removes AP from the NEXRAD reflectivity data. In this paper, we will first provide a brief description of the algorithm. Next we will present the truthing methodology used to identify AP. Then, we will show the algorithm performance results and failure mechanisms with this initial version. Finally, we consider refinements to improve the algorithm's performance.
READ LESS

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed...

READ MORE

The capabilities and limitations of using the ASR-9 as a terminal area precipitation sensor

Published in:
28th Conf. on Radar Meteorology, 7-12 September 1997.

Summary

The Airport Surveillance Radar (ASR-9) weather channel is an invaluable tool to air-traffic and flight management specialists. The precipitation data from this sensor is currently displayed on air-traffic specialists' radar scopes and is incorporated into the Integrated Terminal Weather System (ITWS). The data are used to determine optimum routes for aircraft operating in and near the tenninal airspace. Data from other terminal area precipitation sensors such as the Terminal Doppler Weather Radar (TDWR) and the Next Generation Weather Radar (NEXRAD) are also used for this same purpose. The primary advantage of using the ASR-9 as a precipitation sensor is its high update rate, e.g. thirty seconds versus about five minutes for TDWR and N EX RAD. The ASR-9 is also quite reliable, with limited down time. Finally, range folding is not a significant problem with this radar. However, during ITWS prototype testing over the past three years, we have identified several limitations of using this radar as a precipitation sensor. For one, the maximum reflectivity of cells can be significantly underestimated by the ASR-9 due to partial filling of its fan-shaped elevation beam and cell-to-cell spatial averaging. Also, the occurrence of underestimation seems to increase when the radar operates in circular polarization mode. In addition, we have analyzed cases where significant precipitation-induced attenuation has occurred. Finally, because most ASR-9s are located on the airport, rain cores developing aloft, above the airport, maybe underestimated or missed entirely. This paper focuses on the problems identified through the ITWS prototype testing.
READ LESS

Summary

The Airport Surveillance Radar (ASR-9) weather channel is an invaluable tool to air-traffic and flight management specialists. The precipitation data from this sensor is currently displayed on air-traffic specialists' radar scopes and is incorporated into the Integrated Terminal Weather System (ITWS). The data are used to determine optimum routes for...

READ MORE

Convective weather forecasting for FAA applications

Published in:
7th Conf. on Aviation, Range, and Aerospace Meteorology, ARAM, 2-7 February 1997.

Summary

The Convective Weather Product Development Team (PDT) was formed in 1996 as part of the reorganization of the FAA Aviation Weather Research Program, to provide an effective way to conduct critical applied research in a collaborative and rational fashion. Detecting and predicting convective weather is extremely important to aviation, since approximately half of the national airspace delay in the warm season is caused by thunderstorms. Reliable 0--6 hr storm predictions are essential for aviation users to achieve safe and efficient use of the airspace, as well as for future air traffic control automation systems. Our goal on this PDT is to direct our research and development activities toward operationally useful convective weather detection and forecast products, and delivery of those products, so that users can receive benefits on an immediate and continual basis. Given that we have many more initiatives than funding, we have chosen to prioritize our activities according to near-term achievable benefits to users. Our hope is that the success of initial planned demonstrations will help the FAA identify a consistent level of long-term R&D funding, so that we can make real progress towards achieving our full set of goals. In this paper, we present our statement of the FAA Convective Weather Forecasting problem, evidence of the need for forecasts in the National Airspace System (NAS), and an illustration of the air traffic delay caused by convective weather. We then discuss our research plan and rationale, and outline our main initiatives for the upcoming year.
READ LESS

Summary

The Convective Weather Product Development Team (PDT) was formed in 1996 as part of the reorganization of the FAA Aviation Weather Research Program, to provide an effective way to conduct critical applied research in a collaborative and rational fashion. Detecting and predicting convective weather is extremely important to aviation, since...

READ MORE

The impact of thunderstorm growth and decay on air traffic management in class B airspace

Published in:
7th Conf. on Aviation, Range, and Aerospace Meteorology, ARAM, 2-7 February 1997.

Summary

Air traffic management is a challenging task, especially if the airspace involved is impacted by inclement weather. The high volume of air traffic which inundates the nation's major airports compounds the difficulties with which Air Traffic Control (ATC) specialists have to cope. When you add the unpredictability of thunderstorm growth and decay to the controllers workload, air traffic management becomes even more of a challenge. ATC specialists would benefit from reliable forecasts of thunderstorm growth and decay. To determine how they would use a Growth and Decay product, ATC specialists from the Memphis Air Route Traffic Control Center (ARTCC), Traffic Management Unit (TMU), and TRACON supervisors were interviewed while viewing five movie loops of Memphis weather cases. The movies consisted of the ASR-9 six-level reflectivity data, aircraft beacons, and storm motion vectors.
READ LESS

Summary

Air traffic management is a challenging task, especially if the airspace involved is impacted by inclement weather. The high volume of air traffic which inundates the nation's major airports compounds the difficulties with which Air Traffic Control (ATC) specialists have to cope. When you add the unpredictability of thunderstorm growth...

READ MORE