Publications

Refine Results

(Filters Applied) Clear All

The Memphis ITWS convective forecasting collaborative demonstration

Summary

Accurate, short-term forecasts of where thunderstorms will develop, move and decay allow for strategic traffic management in and around the aviation terminal and enroute airspace. Pre-planning to avoid adverse weather conditions provides safe, smooth and continuous air traffic flow and savings in both fuel cost and time. Wolfson, et. al ( 1997) describe the problem of convective weather forecasting for FAA applications. In 1995, National Center for Atmospheric Research (NCAR), MIT Lincoln Laboratory (MIT-LL) and National Severe Storms Laboratory (NSSL) scientists and engineers agreed to collaborate on the development of a convective weather forecasting algorithm for use in airport terminal areas. Each laboratory brings special strengths to the project. NCAR has been developing techniques for precise, short-term (0-60 minutes) forecasts of thunderstorm initiation, movement and dissipation for the FAA over the past ten years and has developed the Auto-Nowcaster software. MIT-LL has been developing real-time algorithms for the Integrated Terminal Weather System (ITWS), including techniques for storm tracking, gust front detection, and calculating storm growth and decay (as part of predicting microbursts) . NSSL has been working on the NEXRAD Storm Cell Identification and Tracking (SCIT) algorithm, and on understanding the predictive value of the storm cell information. Thus by using the latest research results and best techniques available at each laboratory, the collaborative effort will hopefully result in a superior convective weather forecasting algorithm. Our goal in the immediate future is to develop a joint algorithm that can be demonstrated to users of terminal weather information, so that the benefits of convective weather forecast information can be realized, and the remaining needs can be assessed. As a first effort in the collaboration, the laboratories fielded their individual algorithms at the Memphis ITWS site. This paper gives an overview of our collaborative experiment in Memphis, the system each laboratory operated, some preliminary analysis of our performance on one case, and our plans for the near future.
READ LESS

Summary

Accurate, short-term forecasts of where thunderstorms will develop, move and decay allow for strategic traffic management in and around the aviation terminal and enroute airspace. Pre-planning to avoid adverse weather conditions provides safe, smooth and continuous air traffic flow and savings in both fuel cost and time. Wolfson, et. al...

READ MORE

A comprehensive system for measuring wake vortex behavior and related atmospheric conditions at Memphis, Tennessee

Published in:
Air Traffic Control Q., Vol. 5, No. 1, January 1997, pp. 49-68.

Summary

Models of vortex behavior as a function of atmospheric conditions are being developed in an attempt to improve safety and minimize unnecessary airport capacity restrictions due to wake vortices. Direct measurements of vortices and the relevant meteorological conditions in an operational setting, which would serve to improve the understanding of vortex behavior, are scarce and incomplete. A comprehensive vortex, meteorological, and aircraft measurement system has been constructed at Memphis International Airport and operated in two I-month periods during 1994 and 1995. A 10.6 um continuous-wave (CW) coherent lidar was used to measure vortex parameters with high fidelity. This lidar features a number of improvements over previous systems, including an automatic vortex detection and tracking algorithm to ensure efficient scanning. Meteorological data were collected from a 45 m instrumented tower, balloon soundings, a wind profiler/radio acoustic sounding system (RASS), sonic detection and ranging (SO DAR), and other sensors. This paper presents ensemble distributions of the conditions under which the over 500 aircraft were measured, and samples of vortex and atmospheric measurements. These data will be compared with theoretical predictions of vortex behavior as part of the development of an operational system designed to reduce aircraft spacings in the terminal area.
READ LESS

Summary

Models of vortex behavior as a function of atmospheric conditions are being developed in an attempt to improve safety and minimize unnecessary airport capacity restrictions due to wake vortices. Direct measurements of vortices and the relevant meteorological conditions in an operational setting, which would serve to improve the understanding of...

READ MORE

ITWS microburst prediction algorithm performance, capabilities, and limitations

Summary

Lincoln Laboratory, under funding from the Federal Aviation Administration (FAA) Terminal Doppler Weather Radar program, has developed algorithms for automatically detecting microbursts. While microburst detection algorithms provide highly reliable warnings of microbursts. there still remains a period of time between microburst onset and pilot reaction during which aircraft are at risk. This latency is due to the time needed for the automated algorithms to operate on the radar data, for air traffic controllers to relay any warnings and for pilots to react to the warnings. Lincoln Laboratory research and development has yielded an algorithm for accurately predicting when microburst outflows will occur. The Microburst Prediction Algorithm is part of a suite of weather detection algorithms within the Integrated Terminal Weather System. This paper details the performance of the Microburst Prediction Algorithm over a wide range of geographical and climatological environments. The paper also discusses the full range of the Microburst Prediction Algorithm's capabilities and limitations in varied weather environments. This paper does not discuss the overall rationale for a prediction algorithm or the detailed methodology used to generate predictions.
READ LESS

Summary

Lincoln Laboratory, under funding from the Federal Aviation Administration (FAA) Terminal Doppler Weather Radar program, has developed algorithms for automatically detecting microbursts. While microburst detection algorithms provide highly reliable warnings of microbursts. there still remains a period of time between microburst onset and pilot reaction during which aircraft are at...

READ MORE

ASR-9 Weather Systems Processor (WSP): wind shear algorithms performance assessment

Published in:
Workshop on Wind Shear and Wind Shear Alert Systems,. Oklahoma City, 13-15 November, 1996.

Summary

Under Federal Aviation Administration sponsorship, Lincoln Laboratory has developed a prototype Airport Surveillance Radar Weather Systems Processor (ASR-WSP). This prototype has been used for field measurements and operational demonstrations since 1987. Measurements so acquired provide an extensive database for development and validation of the algorithms used by the WSP to generate operational wind shear information for Air Traffic Controllers. In this paper we assess the performance of the current versions of the WSP's microburst and gust front wind shear detection algorithms on data from each of the locations at which our prototype system has operated. Evaluation of the associated environmental characteristics (e.g., storm structure, radar ground clutter environment) allows for generalization of these results to the major U.S. climatic regimes where the production version of WSP will be deployed.
READ LESS

Summary

Under Federal Aviation Administration sponsorship, Lincoln Laboratory has developed a prototype Airport Surveillance Radar Weather Systems Processor (ASR-WSP). This prototype has been used for field measurements and operational demonstrations since 1987. Measurements so acquired provide an extensive database for development and validation of the algorithms used by the WSP to...

READ MORE

Analysis of the 12 April 1996 wind shear incident at DFW airport

Published in:
Workshop on Wind Shear and Wind Shear Alert Systems, 13-15 November, 1996.

Summary

Wind shear detection algorithms that operate on Doppler radar data are tuned to primarily recognize the velocity and reflectivity signatures associated with microbursts and gust fronts. Microbursts produce a divergent pattern in the velocity field that is associated with a descending column of precipitation. Gust fronts produce a convergent pattern that is often associated with a thin-line reflectivity feature. On April 12, 1996 at Dallas-Fort Worth International Airport (DFW) three pilots reported encounters with wind shear in a five minute period (2329-33 GMT). The third pilot (AA 1352) reported an encounter with "severe wind shear", which we refer to as "the incident" throughout the paper. He used maximum throttle to keep the MD-80 in the air and reported that it was only "by the grace of God" that the aircraft did not crash (Dallas Morning News, 4/19/96). The plane, originally bound for Pittsburgh, was diverted to Tulsa where the passengers were offloaded to another aircraft, the black box was removed, and the engines were checked according to procedures required whenever maximum throttle is utilized.
READ LESS

Summary

Wind shear detection algorithms that operate on Doppler radar data are tuned to primarily recognize the velocity and reflectivity signatures associated with microbursts and gust fronts. Microbursts produce a divergent pattern in the velocity field that is associated with a descending column of precipitation. Gust fronts produce a convergent pattern...

READ MORE

Comparison of the performance of the Integrated Terminal Weather System (ITWS) and Terminal Doppler Weather Radar (TDWR) microburst detection algorithms

Published in:
Workshop on Wind Shear and Wind Shear Alert Systems, 13-15 November, 1996.

Summary

This paper describes the designs of the TDWR and ITWS Microburst Detection algorithms, and compares their performances in the Orlando, FL and Memphis, TN environments. This is the first study in which the performance of the TDWR and ITWS microburst detection algorithms are compared using an identical data set and a common set of truth criteria. Examples are presented illustrating common scenarios which create the performance differences. Detail is presented on the impact of the ITWS VIL (Vertically Integrated Liquid water) test in reducing algorithm false alarms. This algorithm feature is currently being considered as a retrofit to the TDWR algorithm.
READ LESS

Summary

This paper describes the designs of the TDWR and ITWS Microburst Detection algorithms, and compares their performances in the Orlando, FL and Memphis, TN environments. This is the first study in which the performance of the TDWR and ITWS microburst detection algorithms are compared using an identical data set and...

READ MORE

Discussion of the impact of data contamination on TDWR algorithm performance

Published in:
Workshop on Wind Shear and Wind Shear Alert Systems, 13-15 November, 1996.

Summary

The Federal Aviation Administration (FAA) is currently deploying Terminal Doppler Weather Radars (TDWRs) at key airports in the continental U.S. that experience high volumes of traffic and high frequencies of thunderstorm impact. The TDWR is designed to display the location and intensity of storm cells as well as the location and intensity of wind shear events in the airport vicinity. The TDWR system uses clutter filters and four data quality editing techniques: point target removal, clutter residue editing maps (CREMs), range obscuration editing, and velocity dealiasing in an attempt to reduce base data contamination prior to wind shear algorithm processing. The performance of the wind shear detection algorithms is directly related to the quality of the base data. In particular, failures of the data quality editors can seriously degrade the wind shear detection algorithm's performance. It will be shown that these failures can lead to both undetected and false events. In addition, clutter contamination from nonmeteorological sources such as birds can produce false wind shear signatures in the radar data. This paper will examine the impact of data contamination on algorithm performance at key TDWR sites where base and products data have been collected. The severity of these failures will be discussed, along with possible solutions to the most significant problems.
READ LESS

Summary

The Federal Aviation Administration (FAA) is currently deploying Terminal Doppler Weather Radars (TDWRs) at key airports in the continental U.S. that experience high volumes of traffic and high frequencies of thunderstorm impact. The TDWR is designed to display the location and intensity of storm cells as well as the location...

READ MORE

Machine intelligent gust front algorithm for the Terminal Doppler Weather Radar (TDWR) and Integrated Terminal Weather System (ITWS)

Published in:
Workshop on Wind Shear and Wind Shear Alert Systems, 13-15 November, 1996.

Summary

Thunderstorms often generate gust fronts that can have significant impact on airport operations. Unanticipated changes in wind speed and direction are of concern from an air traffic safety viewpoint (hazardous wind shear) as well as from an airport planning point of view (runway configuration). Automated gust front detection is viewed by FAA and the air traffic community as an important component of current and future hazardous weather detection systems including the Terminal Doppler Weather Radar (TDWR), ASR-9 with Weather Systems Processor (ASR-9 WSP), and the Integrated Terminal Weather Systems (ITWS) for which TDWR is a principal sensor. In cooperation with the FAA, Lincoln Laboratory has successfully developed and tested a real-time Machine Intelligent Gust Front Algorithm (MIGFA) for use with Doppler weather radars. This algorithm resulted from the successful fusion of two complementing technologies developed at Lincoln Laboratory: computer vision/machine intelligence techniques originally developed for automated target recognition, and automated product-oriented weather radar data processing. Using these techniques, a version of MIGFA designed for use with TDWR has demonstrated substantial improvement over the existing TDWR gust front algorithm, detecting more and greater extents of gust fronts with fewer false alarms. MIGFA is slated to eventually replace the existing TDWR gust front algorithm and will be used as the gust front algorithm for the planned ITWS and ASR-9 WSP systems. A brief overview of techniques used by MIGFA to identify and track gust fronts will bre presented in this paper. More details, along with recent detection performance results, can be obtained from prior publications. However, detection and tracking of a gust front is only part of the task. Once the location of a gust front has been determined, the associated wind shear estimate and wind shift forecast must be computed. Several issues arises. For example, a gust front can be tens of kilometers in length, with outflow strength and contrasting environmental winds varying considerably along its length. Where along the front should the wind shear analysis be performed? Also, for airport planning purposes, air traffic controllers and managers need to plan runway configuration based on winds that may change suddenly when a gust front moves over the airport. Depending on the nature of the gust front, some of these winds are relatively transient while others are more persistent. How should the wind shift advisory produced by the algorithm take this into account? MIGFA uses a consensus derived from a variety of estimation techniques as a robust means of generating wind shear and wind shift estimates for detected gust fronts. These techniques, and some of their limitations, are discussed. Results of comparisons of MIGFA-generated wind shear and wind shift reports against observations are also presented. The paper concludes by outlining planned enhancements to incorporate additional information available under ITWS that should further improve the quality of MIGFA's wind shear and wind shift forecasts.
READ LESS

Summary

Thunderstorms often generate gust fronts that can have significant impact on airport operations. Unanticipated changes in wind speed and direction are of concern from an air traffic safety viewpoint (hazardous wind shear) as well as from an airport planning point of view (runway configuration). Automated gust front detection is viewed...

READ MORE

The Terminal Weather Information for Pilots program

Published in:
Workshop on Wind Shear and Wind Shear Alert Systems,. Oklahoma City, 13-15 November, 1996.

Summary

The Federal Aviation Administration (FAA) is currently sponsoring programs such as the Terminal Doppler Weather Radar (TDWR) and the Integrated Terminal Weather System (ITWS) which will significantly improve the aviation weather information in the terminal area. Given the great increase in the quantity and quality of this information, it would be highly desirable to provide this data directly to pilots rather than having to rely on voice communications. Providing terminal weather information automatically via data link would both enhance pilot awareness of potential weather hazards and reduce air traffic controller workload. The Terminal Weather Information for Pilots (TWLP) program was created to address these needs. This paper will describe the philosophy behind the product, the format of the TWIP messages. and the system design. An interesting weather case from the operational demonstration currently underway will be shown, and plans for the national deployment of the TWIP capability at all TDWR-based airports will be discussed.
READ LESS

Summary

The Federal Aviation Administration (FAA) is currently sponsoring programs such as the Terminal Doppler Weather Radar (TDWR) and the Integrated Terminal Weather System (ITWS) which will significantly improve the aviation weather information in the terminal area. Given the great increase in the quantity and quality of this information, it would...

READ MORE

1995 wake vortex program at Memphis, TN

Published in:
AIAA 34th Aerospace Sciences Meeting and Exhibit, 15-18 January 1996.

Summary

This paper describes wake vortex field measurements conducted during August, 1995 at Memphis, TN. The objective of this effort was to record wake vortex behavior for varying atmospheric conditions and aircraft types. Wake vortex behavior was observed using a mobile CW coherent lidar. This lidar features a number of improvements over previous systems, including the first-ever demonstration of an automatic wake vortex detection and tracking algorithm. An extensive meteorological data collection system was deployed in support of the wake vortex measurements, including a 150-ft instrumented tower, wind profiler/RASS (radio acoustic sounding system), sonar and balloon soundings. Aircraft flight plan and beacon data were automatically collected to determine aircraft flight number, type, speed, and descent rate. Additional data was received from airlines in postprocessing to determine aircraft weight and model. Preliminary results from the field measurement program are presented illustrating differences in wake vortex behavior depending on atmospheric conditions and aircraft type.
READ LESS

Summary

This paper describes wake vortex field measurements conducted during August, 1995 at Memphis, TN. The objective of this effort was to record wake vortex behavior for varying atmospheric conditions and aircraft types. Wake vortex behavior was observed using a mobile CW coherent lidar. This lidar features a number of improvements...

READ MORE