Publications
Towards a distributed framework for multi-agent reinforcement learning research
Summary
Summary
Some of the most important publications in deep reinforcement learning over the last few years have been fueled by access to massive amounts of computation through large scale distributed systems. The success of these approaches in achieving human-expert level performance on several complex video-game environments has motivated further exploration into...
Fast training of deep neural networks robust to adversarial perturbations
Summary
Summary
Deep neural networks are capable of training fast and generalizing well within many domains. Despite their promising performance, deep networks have shown sensitivities to perturbations of their inputs (e.g., adversarial examples) and their learned feature representations are often difficult to interpret, raising concerns about their true capability and trustworthiness. Recent...
Deep implicit coordination graphs for multi-agent reinforcement learning [e-print]
Summary
Summary
Multi-agent reinforcement learning (MARL) requires coordination to efficiently solve certain tasks. Fully centralized control is often infeasible in such domains due to the size of joint action spaces. Coordination graph based formalization allows reasoning about the joint action based on the structure of interactions. However, they often require domain expertise...
Toward an autonomous aerial survey and planning system for humanitarian aid and disaster response
Summary
Summary
In this paper we propose an integrated system concept for autonomously surveying and planning emergency response for areas impacted by natural disasters. Referred to as AASAPS-HADR, this system is composed of a network of ground stations and autonomous aerial vehicles interconnected by an ad hoc emergency communication network. The system...
Safe predictors for enforcing input-output specifications [e-print]
Summary
Summary
We present an approach for designing correct-by-construction neural networks (and other machine learning models) that are guaranteed to be consistent with a collection of input-output specifications before, during, and after algorithm training. Our method involves designing a constrained predictor for each set of compatible constraints, and combining them safely via...
Graph matching via multi-scale heat diffusion
Summary
Summary
We propose a novel graph matching algorithm that uses ideas from graph signal processing to match vertices of graphs using alternative graph representations. Specifically, we consider a multi-scale heat diffusion on the graphs to create multiple weighted graph representations that incorporate both direct adjacencies as well as local structures induced...
Identification and detection of human trafficking using language models
Summary
Summary
In this paper, we present a novel language model-based method for detecting both human trafficking ads and trafficking indicators. The proposed system leverages language models to learn language structures in adult service ads, automatically select a list of keyword features, and train a machine learning model to detect human trafficking...