Publications
Tagged As
Genetic sequence matching using D4M big data approaches
Summary
Summary
Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new opportunities to efficiently handle the increasing workload. We propose a new method...
Using 3D printing to visualize social media big data
Summary
Summary
Big data volume continues to grow at unprecedented rates. One of the key features that makes big data valuable is the promise to find unknown patterns or correlations that may be able to improve the quality of processes or systems. Unfortunately, with the exponential growth in data, users often have...
Effective parallel computation of eigenpairs to detect anomalies in very large graphs
Summary
Summary
The computational driver for an important class of graph analysis algorithms is the computation of leading eigenvectors of matrix representations of the graph. In this presentation, we discuss the challenges of calculating eigenvectors of modularity matrices derived from very large graphs (upwards of a billion vertices) and demonstrate the scaling...
D4M 2.0 Schema: a general purpose high performance schema for the Accumulo database
Summary
Summary
Non-traditional, relaxed consistency, triple store databases are the backbone of many web companies (e.g., Google Big Table, Amazon Dynamo, and Facebook Cassandra). The Apache Accumulo database is a high performance open source relaxed consistency database that is widely used for government applications. Obtaining the full benefits of Accumulo requires using...
Benchmarking parallel eigen decomposition for residuals analysis of very large graphs
Summary
Summary
Graph analysis is used in many domains, from the social sciences to physics and engineering. The computational driver for one important class of graph analysis algorithms is the computation of leading eigenvectors of matrix representations of a graph. This paper explores the computational implications of performing an eigen decomposition of...
Driving big data with big compute
Summary
Summary
Big Data (as embodied by Hadoop clusters) and Big Compute (as embodied by MPI clusters) provide unique capabilities for storing and processing large volumes of data. Hadoop clusters make distributed computing readily accessible to the Java community and MPI clusters provide high parallel efficiency for compute intensive workloads. Bringing the...
Dynamic Distributed Dimensional Data Model (D4M) database and computation system
Summary
Summary
A crucial element of large web companies is their ability to collect and analyze massive amounts of data. Tuple store databases are a key enabling technology employed by many of these companies (e.g., Google Big Table and Amazon Dynamo). Tuple stores are highly scalable and run on commodity clusters, but...