Publications

Refine Results

(Filters Applied) Clear All

A survey of cryptographic approaches to securing big-data analytics in the cloud

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

The growing demand for cloud computing motivates the need to study the security of data received, stored, processed, and transmitted by a cloud. In this paper, we present a framework for such a study. We introduce a cloud computing model that captures a rich class of big-data use-cases and allows reasoning about relevant threats and security goals. We then survey three cryptographic techniques - homomorphic encryption, verifiable computation, and multi-party computation - that can be used to achieve these goals. We describe the cryptographic techniques in the context of our cloud model and highlight the differences in performance cost associated with each.
READ LESS

Summary

The growing demand for cloud computing motivates the need to study the security of data received, stored, processed, and transmitted by a cloud. In this paper, we present a framework for such a study. We introduce a cloud computing model that captures a rich class of big-data use-cases and allows...

READ MORE

A test-suite generator for database systems

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

In this paper, we describe the SPAR Test Suite Generator (STSG), a new test-suite generator for SQL style database systems. This tool produced an entire test suite (data, queries, and ground-truth answers) as a unit and in response to a user's specification. Thus, database evaluators could use this tool to craft test suites for particular aspects of a specific database system. The inclusion of ground-truth answers in the produced test suite, furthermore, allowed this tool to support both benchmarking (at various scales) and correctness-checking in a repeatable way. Lastly, the test-suite generator of this document was extensively profiled and optimized, and was designed for test-time agility.
READ LESS

Summary

In this paper, we describe the SPAR Test Suite Generator (STSG), a new test-suite generator for SQL style database systems. This tool produced an entire test suite (data, queries, and ground-truth answers) as a unit and in response to a user's specification. Thus, database evaluators could use this tool to...

READ MORE

Sparse matrix partitioning for parallel eigenanalysis of large static and dynamic graphs

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

Numerous applications focus on the analysis of entities and the connections between them, and such data are naturally represented as graphs. In particular, the detection of a small subset of vertices with anomalous coordinated connectivity is of broad interest, for problems such as detecting strange traffic in a computer network or unknown communities in a social network. These problems become more difficult as the background graph grows larger and noisier and the coordination patterns become more subtle. In this paper, we discuss the computational challenges of a statistical framework designed to address this cross-mission challenge. The statistical framework is based on spectral analysis of the graph data, and three partitioning methods are evaluated for computing the principal eigenvector of the graph's residuals matrix. While a standard one-dimensional partitioning technique enables this computation for up to four billion vertices, the communication overhead prevents this method from being used for even larger graphs. Recent two-dimensional partitioning methods are shown to have much more favorable scaling properties. A data-dependent partitioning method, which has the best scaling performance, is also shown to improve computation time even as a graph changes over time, allowing amortization of the upfront cost.
READ LESS

Summary

Numerous applications focus on the analysis of entities and the connections between them, and such data are naturally represented as graphs. In particular, the detection of a small subset of vertices with anomalous coordinated connectivity is of broad interest, for problems such as detecting strange traffic in a computer network...

READ MORE

Big Data dimensional analysis

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

The ability to collect and analyze large amounts of data is a growing problem within the scientific community. The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. One of the main challenges associated with big data variety is automatically understanding the underlying structures and patterns of the data. Such an understanding is required as a pre-requisite to the application of advanced analytics to the data. Further, big data sets often contain anomalies and errors that are difficult to know a priori. Current approaches to understanding data structure are drawn from the traditional database ontology design. These approaches are effective, but often require too much human involvement to be effective for the volume, velocity and variety of data encountered by big data systems. Dimensional Data Analysis (DDA) is a proposed technique that allows big data analysts to quickly understand the overall structure of a big dataset, determine anomalies. DDA exploits structures that exist in a wide class of data to quickly determine the nature of the data and its statistical anomalies. DDA leverages existing schemas that are employed in big data databases today. This paper presents DDA, applies it to a number of data sets, and measures its performance. The overhead of DDA is low and can be applied to existing big data systems without greatly impacting their computing requirements.
READ LESS

Summary

The ability to collect and analyze large amounts of data is a growing problem within the scientific community. The growing gap between data and users calls for innovative tools that address the challenges faced by big data volume, velocity and variety. One of the main challenges associated with big data...

READ MORE

Achieving 100,000,000 database inserts per second using Accumulo and D4M

Summary

The Apache Accumulo database is an open source relaxed consistency database that is widely used for government applications. Accumulo is designed to deliver high performance on unstructured data such as graphs of network data. This paper tests the performance of Accumulo using data from the Graph500 benchmark. The Dynamic Distributed Dimensional Data Model (D4M) software is used to implement the benchmark on a 216-node cluster running the MIT SuperCloud software stack. A peak performance of over 100,000,000 database inserts per second was achieved which is 100x larger than the highest previously published value for any other database. The performance scales linearly with the number of ingest clients, number of database servers, and data size. The performance was achieved by adapting several supercomputing techniques to this application: distributed arrays, domain decomposition, adaptive load balancing, and single-program-multiple-data programming.
READ LESS

Summary

The Apache Accumulo database is an open source relaxed consistency database that is widely used for government applications. Accumulo is designed to deliver high performance on unstructured data such as graphs of network data. This paper tests the performance of Accumulo using data from the Graph500 benchmark. The Dynamic Distributed...

READ MORE

Genetic sequence matching using D4M big data approaches

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new opportunities to efficiently handle the increasing workload. We propose a new method of fast genetic sequence analysis using the Dynamic Distributed Dimensional Data Model (D4M) - an associative array environment for MATLAB developed at MIT Lincoln Laboratory. Based on mathematical and statistical properties, the method leverages big data techniques and the implementation of an Apache Acculumo database to accelerate computations one-hundred fold over other methods. Comparisons of the D4M method with the current gold-standard for sequence analysis, BLAST, show the two are comparable in the alignments they find. This paper will present an overview of the D4M genetic sequence algorithm and statistical comparisons with BLAST.
READ LESS

Summary

Recent technological advances in Next Generation Sequencing tools have led to increasing speeds of DNA sample collection, preparation, and sequencing. One instrument can produce over 600 Gb of genetic sequence data in a single run. This creates new opportunities to efficiently handle the increasing workload. We propose a new method...

READ MORE

Content+context=classification: examining the roles of social interactions and linguist content in Twitter user classification

Published in:
Proc. Second Workshop on Natural Language Processing for Social Media, SocialNLP, 24 August 2014, pp. 59-65.

Summary

Twitter users demonstrate many characteristics via their online presence. Connections, community memberships, and communication patterns reveal both idiosyncratic and general properties of users. In addition, the content of tweets can be critical for distinguishing the role and importance of a user. In this work, we explore Twitter user classification using context and content cues. We construct a rich graph structure induced by hashtags and social communications in Twitter. We derive features from this graph structure - centrality, communities, and local flow of information. In addition, we perform detailed content analysis on tweets looking at offensiveness and topics. We then examine user classification and the role of feature types (context, content) and learning methods (propositional, relational) through a series of experiments on annotated data. Our work contrasts with prior approaches in that we use relational learning and alternative, non-specialized feature sets. Our goal is to understand how both content and context are predictive of user characteristics. Experiments demonstrate that the best performance for user classification uses relational learning with varying content and context features.
READ LESS

Summary

Twitter users demonstrate many characteristics via their online presence. Connections, community memberships, and communication patterns reveal both idiosyncratic and general properties of users. In addition, the content of tweets can be critical for distinguishing the role and importance of a user. In this work, we explore Twitter user classification using...

READ MORE

VizLinc: integrating information extraction, search, graph analysis, and geo-location for the visual exploration of large data sets

Published in:
Proc. KDD 2014 Workshop on Interactive Data Exploration and Analytics, IDEA, 24 August 2014, pp. 10-18.

Summary

In this demo paper we introduce VizLinc; an open-source software suite that integrates automatic information extraction, search, graph analysis, and geo-location for interactive visualization and exploration of large data sets. VizLinc helps users in: 1) understanding the type of information the data set under study might contain, 2) finding patterns and connections between entities, and 3) narrowing down the corpus to a small fraction of relevant documents that users can quickly read. We apply the tools offered by VizLinc to a subset of the New York Times Annotated Corpus and present use cases that demonstrate VizLinc's search and visualization features.
READ LESS

Summary

In this demo paper we introduce VizLinc; an open-source software suite that integrates automatic information extraction, search, graph analysis, and geo-location for interactive visualization and exploration of large data sets. VizLinc helps users in: 1) understanding the type of information the data set under study might contain, 2) finding patterns...

READ MORE

Effective Entropy: security-centric metric for memory randomization techniques

Published in:
Proc. 7th USENIX Conf. on Cyber Security Experimentation and Test, CSET, 20 August 2014.

Summary

User space memory randomization techniques are an emerging field of cyber defensive technology which attempts to protect computing systems by randomizing the layout of memory. Quantitative metrics are needed to evaluate their effectiveness at securing systems against modern adversaries and to compare between randomization technologies. We introduce Effective Entropy, a measure of entropy in user space memory which quantitatively considers an adversary's ability to leverage low entropy regions of memory via absolute and dynamic intersection connections. Effective Entropy is indicative of adversary workload and enables comparison between different randomization techniques. Using Effective Entropy, we present a comparison of static Address Space Layout Randomization (ASLR), Position Independent Executable (PIE) ASLR, and a theoretical fine grain randomization technique.
READ LESS

Summary

User space memory randomization techniques are an emerging field of cyber defensive technology which attempts to protect computing systems by randomizing the layout of memory. Quantitative metrics are needed to evaluate their effectiveness at securing systems against modern adversaries and to compare between randomization technologies. We introduce Effective Entropy, a...

READ MORE

Using 3D printing to visualize social media big data

Published in:
HPEC 2014: IEEE Conf. on High Performance Extreme Computing, 9-11 September 2014.

Summary

Big data volume continues to grow at unprecedented rates. One of the key features that makes big data valuable is the promise to find unknown patterns or correlations that may be able to improve the quality of processes or systems. Unfortunately, with the exponential growth in data, users often have difficulty in visualizing the often-unstructured, non-homogeneous data coming from a variety of sources. The recent growth in popularity of 3D printing has ushered in a revolutionary way to interact with big data. Using a 3D printed mockup up a physical or notional environment, one can display data on the mockup to show real-time data patterns. In this poster and demonstration, we describe the process of 3D printing and demonstrate an application of displaying Twitter data on a 3D mockup of the Massachusetts Institute of Technology (MIT) campus, known as LuminoCity.
READ LESS

Summary

Big data volume continues to grow at unprecedented rates. One of the key features that makes big data valuable is the promise to find unknown patterns or correlations that may be able to improve the quality of processes or systems. Unfortunately, with the exponential growth in data, users often have...

READ MORE