Publications
Method to characterize potential UAS encounters using open source data
Summary
Summary
As unmanned aerial systems (UASs) increasingly integrate into the US national airspace system, there is an increasing need to characterize how commercial and recreational UASs may encounter each other. To inform the development and evaluation of safety critical technologies, we demonstrate a methodology to analytically calculate all potential relative geometries...
Geospatial QPE accuracy dependence on weather radar network configurations
Summary
Summary
The relatively low density of weather radar networks can lead to low-altitude coverage gaps. As existing networks are evaluated for gap-fillers and new networks are designed, the benefits of low-altitude coverage must be assessed quantitatively. This study takes a regression approach to modeling quantitative precipitation estimation (QPE) differences based on...
TCAS II and ACAS Xa traffic and resolution advisories during interval management paired approach operations
Summary
Summary
Interval Management (IM) is an FAA Next-Gen Automatic Dependent Surveillance – Broadcast (ADS-B) In application designed to decrease the variability in spacing between aircraft, thereby increasing the efficiency of the National Airspace System (NAS). One application within IM is Paired Approach (PA). In a PA operation, the lead aircraft and...
Weather radar network benefit model for nontornadic thunderstorm wind casualty cost reduction
Summary
Summary
An econometric geospatial benefit model for nontornadic thunderstorm wind casualty reduction is developed for meteorological radar network planning. Regression analyses on 22 years (1998–2019) of storm event and warning data show, likely for the first time, a clear dependence of nontornadic severe thunderstorm warning performance on radar coverage. Furthermore, nontornadic...
Enhanced parallel simulation for ACAS X development
Summary
Summary
ACAS X is the next generation airborne collision avoidance system intended to meet the demands of the rapidly evolving U.S. National Airspace System (NAS). The collision avoidance safety and operational suitability of the system are optimized and continuously evaluated by simulating billions of characteristic aircraft encounters in a fast-time Monte...
Processing of crowdsourced observations of aircraft in a high performance computing environment
Summary
Summary
As unmanned aircraft systems (UASs) continue to integrate into the U.S. National Airspace System (NAS), there is a need to quantify the risk of airborne collisions between unmanned and manned aircraft to support regulation and standards development. Both regulators and standards developing organizations have made extensive use of Monte Carlo...
Detect-and-avoid closed-loop evaluation of noncooperative well clear definitions
Summary
Summary
Four candidate detect-and-avoid well clear definitions for unmanned aircraft systems encountering noncooperative aircraft are evaluated using safety and operational suitability metrics. These candidates were proposed in previous research based on unmitigated collision risk, maneuver initiation ranges, and other considerations. Noncooperative aircraft refer to aircraft without a functioning transponder. One million...
The 2017 Buffalo Area Icing and Radar Study (BAIRS II)
Summary
Summary
The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation...
Weather radar network benefit model for flash flood casualty reduction
Summary
Summary
A monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease casualty rates. Consequently, these two effects in combination...
Wind information requirements for NextGen applications phase 7 report
Summary
Summary
This report details the Required Time of Arrival (RTA) performance of B757 aircraft arriving at various meter fixes across a range of altitudes from 33,000' down to 3,000' above ground level (AGL). The system tested demonstrated less than ±10 second arrival error in at least 95% of flights at meter...