Publications

Refine Results

(Filters Applied) Clear All

Corridor Integrated Weather System operation benefits 2002-2003 : initial estimates of convective weather delay reduction

Published in:
MIT Lincoln Laboratory Report ATC-313

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at major en route control centers in the Northeast and Great Lakes corridors and the Air Traffic Control Systems Command Center (ATCSCC) during six multi-day periods in 2003. This first phase of the benefit assessment characterizes major safety and delay reduction benefits and quantifies the delay reduction benefits for two key Traffic Flow Management (TFM) user benefits: "keeping air routes open longer/reopening closed routes soon" and "proactive, efficient reroutes of traffic around storm cells." The overall CIWS delay reduction for these two benefits is 40,000 to 69,000 hours annually with an equivalent monetary value ot $127M to $26M annually. Convective weather delays at most of the major airports in the test domain, normalized by thunderstorm frequency, decreased after new CIWS echo tops and forecast products were introduced. Recommendations are made for near-term, low-cost improvements to the CIWS demonstration system to further increase the operational benefits.
READ LESS

Summary

The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at...

READ MORE

Utilizing local terrain to determine targeted weather observation locations

Published in:
Conf. on Battlespace Atmospheric and Cloud Impacts on Military Operations, BACIMO, 9-11 September 2003.

Summary

Many of the recent conflicts where the United States (US) military forces have been deployed are regions that contain complex terrain (i.e. Korea, Kosovo, Afghanistan, and northern Iraq). Accurate weather forecasts are critical to the success of operations in these regions and are typically supplied by numerical weather prediction (NWP) models like the US Navy NOGAPS, CAOMPS, and US Airforce MM5. Unfortunately the weather observations required to generate accurate initial conditions needed by these models are often not available. In these cases it is desirable to deploy additional weather sensors. The question then becomes: Where should the military planners deploy their sensor resources? This study demonstrates that knowledge of just the terrain within the model domain may be a useful factor for military planners to consider. For NWP, model forecast errors in mountainous areas are typically thought to be due to poorly resolved terrain, or model physics not suited for use in a complex terrain environment. Recent advances in computational technology are making it possible to run these models at resolutions where many of the significant terrain features are now being well resolved. While terrain can be accurately specified, often the gradients in wind, temperature, and moisture fields associated with the higher resolution terrain are not. As a result, initial conditions in complex terrain environments are not be adequately specified. Since not all initial condition errors contribute significantly to model forecast error, knowledge of terrain induced NWP model forecast sensitivity may be important when developing and deploying a weather sensor network to support a regional scale NWP model. The terrain induced model sensitivity can provide an indication of which variables in the initial conditions have a significant influence on the forecast and where initial conditions need to be most accurate to minimize model forecast error. A sensor network can then be designed to minimize these errors by deploying critical sensors in sensitive locations, thereby reducing relevant initial condition error without the costly deployment of a high-density sensor network. This is similar to the targeted observation technique first suggested by Emanuel et al. (1995), except that in this example the targeted observations would be designed to reduce initial condition error associated with poorly resolved atmospheric features created by the terrain. This paper is organized as follows. Section 2 contains a brief description of the data collection effort designed to support this study. The experimental design and the specifics of the case used in this study are described in section 3. The analysis and results from both the forward and adjoint simulations are presented in section 4. Section 5 contains a summary of the results, and a brief discussion of their implications.
READ LESS

Summary

Many of the recent conflicts where the United States (US) military forces have been deployed are regions that contain complex terrain (i.e. Korea, Kosovo, Afghanistan, and northern Iraq). Accurate weather forecasts are critical to the success of operations in these regions and are typically supplied by numerical weather prediction (NWP)...

READ MORE

An examination of wind shear alert integration at the Dallas/Ft. Worth International Airport (DFW)

Published in:
MIT Lincoln Laboratory Report ATC-309

Summary

The Dallas / Fort Worth International Airport (DFW) is one of the four demonstration system sites for the Integrated Terminal Weather System (ITWS). One of the primary benefits of the ITWS is a suite of algorithms that utilize data from the Terminal Doppler Weather Radar (TDWR) to generate wind shear alerts. DFW also benefits from a Network Expansion of the Low-Level Wind Shear Advisory System (LLWAS-NE). The LLWAS-NE generated alerts are integrated with the radar-based alerts in ITWS to provide Air Traffic Control (ATC) with a comprehensive set of alert information. This study examines the integrated DFW wind shear alerts with emphasis on circumstances in which the detection performance of the TDWR-based wind shear algorithms was poor. Specific detection problems occur in the following situations: when wind shear events over the airport are aligned along a radial to the TDWR, during "non-traditional" wind shear events, when severe signal attenuation occurs during heavy precipitation over the TDWR radar site, and because of excessive TDWR clutter-residue editing over the airport. In all of the cases examined, the LLWAS-NE issued alerts to ATC that would have otherwise gone unreported.
READ LESS

Summary

The Dallas / Fort Worth International Airport (DFW) is one of the four demonstration system sites for the Integrated Terminal Weather System (ITWS). One of the primary benefits of the ITWS is a suite of algorithms that utilize data from the Terminal Doppler Weather Radar (TDWR) to generate wind shear...

READ MORE

Range-velocity ambiguity mitigation schemes for the enhanced Terminal Doppler Weather Radar

Published in:
37th Int. Conf. on Radar Meteorology, 6-12 August 2003.

Summary

The Terminal Doppler Weather Radar (TDWR) radar data acquisition (RDA) subsystem is being replaced as part of a broader FAA program to improve the supportability of the system. An engineering prototype RDA is under development that will provide a modern, open-systems hardware platform and standards-compliant software. The new platform also provides an opportunity to insert algorithms to improve the quality of existing base data products, as well as support future enhancements to the aviation weather services provided by TDWR. There are several outstanding data quality issues with the TDWR. In this paper, we focus on mitigation schemes for the range-velocity ambiguity problem that is especially severe for C-band weather radars such as the TDWR.
READ LESS

Summary

The Terminal Doppler Weather Radar (TDWR) radar data acquisition (RDA) subsystem is being replaced as part of a broader FAA program to improve the supportability of the system. An engineering prototype RDA is under development that will provide a modern, open-systems hardware platform and standards-compliant software. The new platform also...

READ MORE

Reducing severe weather delays in congested airspace with weather decision support for tactical air traffic management

Published in:
5th Eurocontrol/DAA ATM R&D Seminar, 23-27 June 2003.

Summary

Reducing congested airspace delays due to thunderstorms has become a major objective of the FAA due to the recent growth in convective delays. In 2000 and 2001 the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM) at time scales between 2 and 6 hours in advance using collaborative weather forecasts and routing strategy development. This "strategic" approach experienced difficulties in a large fraction of the weather events because it was not possible to forecast convective storm impacts on routes and capacities accurately enough to accomplish effective traffic flow management. Hence, we proposed in 2001 that there needed to be much greater emphasis on tactical air traffic management at time scales where it would be possible to generate much more accurate convective weather forecasts. In this paper, we describe initial operational results in the very highly congested Great Lakes and Northeast Corridors using weather products from the ongoing Corridor Integrated Weather System (CIWS) concept exploration. Key new capabilities provided by this system include very high update rates (to support tactical air traffic control), much improved echo-tops information, and fully automatic 2-hour convective forecasts using the latest "scale separation" storm tracking technologies. Displays were provided at major terminal areas, en route centers in the corridors, and the FAA Command Center. Substantial reduction in delays has been achieved mostly through weather product usage at the shorter time scales. Quantifying the achieved benefits for this class of products have raised major questions about the conceptual framework for traffic flow management in these congested corridors that must be addressed in the development of air traffic management systems to utilize the weather products.
READ LESS

Summary

Reducing congested airspace delays due to thunderstorms has become a major objective of the FAA due to the recent growth in convective delays. In 2000 and 2001 the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM) at time scales between 2 and 6...

READ MORE

Route selection decision support in convective weather: a case study of the effects of weather and operational assumptions on departure throughput

Published in:
5th Eurocontrol/FAA ATM R&D Seminar, 23-27 2003.

Summary

This paper presents a detailed study of a convective weather event affecting the northeastern United States on 19 April 2002: its impacts on departure throughput, the response of traffic managers and an analysis of the potential effects of decision support on system performance. We compare actual departure throughput to what may have been achieved using the Route Availability Planning Tool (RAPT), a prototype decision support tool. We examine two questions: Can decision support identify opportunities to release departures that were missed during the event? How is route selection guidance affected by the operational model incorporated into the decision support tool? By "operational model", we mean three things: the choice of weather forecast information used to define hazards (precipitation, echo tops, etc.), the model for how airspace is used (route definition and allocation) and the assessment of the likelihood that a given route is passable. We focus our analysis on the operational model only; we eliminate weather forecast uncertainty as a factor in the analysis by running RAPT using the actual observed weather as the forecast ('perfect' forecast). Results show that decision support based on perfect forecasts is sensitive to all three elements of the operational model. The sensitivity to weather metrics became evident when we compared decision support based upon perfect forecasts of level 3 vertically integrated liquid (VIL) to that based upon VIL plus storm echo tops. Traffic managers were at times able to move more aircraft by abandoning nominal routing than if they had used nominal routing with perfect weather information. The assessment of route availability will, at times, be ambiguous; different interpretations of that assessment lead to decisions that result in significant differences in departure throughput. These results suggest that for traffic flow management tools, a realistic operational model may be at least as important as the frequently discussed problem of weather forecast uncertainty.
READ LESS

Summary

This paper presents a detailed study of a convective weather event affecting the northeastern United States on 19 April 2002: its impacts on departure throughput, the response of traffic managers and an analysis of the potential effects of decision support on system performance. We compare actual departure throughput to what...

READ MORE

The effect of topography on the initial condition sensitivity of a mesoscale model

Published in:
10th Conf. on Mesoscale Processes, 23-27 June 2003.

Summary

Errors in NWP model forecasts are typically due to deficiencies in the model formulation, inaccuracies associated with the numerical integration techniques, and errors in the specification of initial conditions. This study investigates the latter of these three issues and, in particular, elucidates the errors in the initial conditions due to inadequate data resolution. In a basic sense, for the atmosphere to be adequately sampled at a given length scale, it is not always necessary to increase the number of samples throughout the entire domain. Increased sampling resolution has the greatest benefit in the regions where gradients in the atmospheric conditions exist. Targeted observation techniques attempt to take advantage of this fact by using additional observations to improve the initial analysis in the regions that will have the most impact on forecast accuracy (Emanuel et al. 1995). The result is an economical means to reduce initial condition error and improve forecast accuracy. It is well known that terrain can serve as a localized forcing mechanism in high-resolution models. In addition to acting as a forcing mechanism, variations in terrain can also create strong gradients in the atmospheric fields of models using terrain following vertical coordinates. It is reasonable to assume that if these gradients were better represented in the initial conditions, forecasts accuracies could improve. The present study examines the relationship between terrain variability and the sensitivity of a high-resolution wind forecast to errors in the initial conditions in these areas. The background behind this study and a brief description of the terrain and atmospheric characteristics of the cases used in the experiments are presented in section 2. Initial condition sensitivity analysis results from the fifth generation Pennsylvania State University (PSU), National Center for Atmospheric Research (NCAR) Mesoscale Model (MM5) adjoint and forward models are contained in sections 3 and 4. A summary of the results and conclusions are found in section 5.
READ LESS

Summary

Errors in NWP model forecasts are typically due to deficiencies in the model formulation, inaccuracies associated with the numerical integration techniques, and errors in the specification of initial conditions. This study investigates the latter of these three issues and, in particular, elucidates the errors in the initial conditions due to...

READ MORE

Accuracy of motion-compensated NEXRAD precipitation

Author:
Published in:
MIT Lincoln Laboratory Report ATC-312

Summary

A number of Federal Aviation Administration (FAA) aviation weather systems utilize Next Generation Weather Radar (NEXRAD) precipitation products including the Integrated Terminal Weather System (ITWS), Corridor Integrated Weather System (CIWS), Medium Intensity Airport Weather System (MIAWS), and the Weather and Radar Processor (WARP). The precipitation products from a NEXRAD [e.g., base reflectivity, composite reflectivity (CR), and vertical integrated liquid (VIL)] are generally only updated once with each NEXRAD volume scan, nominally at 5-6 minute intervals. Hence, the indicated position of storms may not correspond to the actual position due to movement of the storms since the last NEXRAD product update. This latency is particularly a concern in terminal applications such as MIAWS, which use the NEXRAD precipitation product to provide time critical information on moderate and heavy precipitation impacts on the final approach and departure corridors and runways. In order to provide a more accurate depiction, the MIAWS precipitation map is updated (advected) every 30 seconds based on the motion of the storms. The CIWS system performs a similar advection of NEXRAD data before mosaicing the precipitation products from individual NEXRADs. In both cases, motion vectors used for advection are generated by spatial cross-correlation of two consecutive precipitation maps (Chornoboy et al., 1994). This report addresses the accuracy of the advected precipitation map as compared to the current NEXRAD precipitation map using seven MIAWS cases from the Memphis, TN testbed and Jackson, MS prototype. We find that the advected precipitation product is significantly more accurate at providing a depiction of the current intensity of the storms as a fbnction of location. Without advection, the precipitation product from successive NEXRAD volume scans differs by at least one VIP level for over 47.5% of the one square kilometer pixels and has VIP level differences of two levels or more for 6.9% of the pixels in cases where both products had precipitation in a location. The advected precipitation product differs by one or more levels in only 17.2% of the pixels and a VIP level difference of two or more levels is observed in only 1.6% of the pixels. The percentage of cells in which there is precipitation in one map and no precipitation in the other is reduced from over 22% to less than 11% by use of advection. The analysis approach utilized did not quantitatively determine the relative importance of storm growth and decay over the period of the volume scan versus errors in storm motion estimation in causing the differences between the advected precipitation field and the current precipitation field.
READ LESS

Summary

A number of Federal Aviation Administration (FAA) aviation weather systems utilize Next Generation Weather Radar (NEXRAD) precipitation products including the Integrated Terminal Weather System (ITWS), Corridor Integrated Weather System (CIWS), Medium Intensity Airport Weather System (MIAWS), and the Weather and Radar Processor (WARP). The precipitation products from a NEXRAD [e.g...

READ MORE

Medium intensity airport weather system NEXRAD selection recommendations

Published in:
MIT Lincoln Laboratory Report ATC-311

Summary

Under Federal Aviation Administration (FAA) sponsorship, Lincoln Laboratory has developed a Medium Intensity Airport Weather System (MIAWS). MIAWS provides air traffic controllers at medium- intensity airports a real time color display of weather impacting the terminal airspace. The weather data comes from nearby Doppler weather surveillance radars, called Next Generation Radar (NEXRAD). since May 2000 at field sites in Memphis (TN), Jackson (MS), Little Rock (AR), and Springfield (MO). With the success of the MIAWS prototypes and favorable response among air traffic controller users, the FAA is seeking to rapidly deploy MIAWS systems at forty airports within the National Airspace System Lincoln Lab has been operating prototypes of the Medium Intensity Airport Weather System (MIAWS) WAS). This report identifies suitable NEXRAD systems for each of the 40 MIAWS airports and three additional test and/or maintenance FAA facilities. Several other radar selection options are also provided to account for availability and cost-saving contingencies.
READ LESS

Summary

Under Federal Aviation Administration (FAA) sponsorship, Lincoln Laboratory has developed a Medium Intensity Airport Weather System (MIAWS). MIAWS provides air traffic controllers at medium- intensity airports a real time color display of weather impacting the terminal airspace. The weather data comes from nearby Doppler weather surveillance radars, called Next Generation...

READ MORE

Evaluation of TDWR range-velocity ambiguity mitigation techniques

Author:
Published in:
MIT Lincoln Laboratory Report ATC-310

Summary

Range and velocity ambiguities pose significant data quality challenges for the Terminal Doppler Weather Radar (TDWR). For typical pulse repetition frequencies (PRFs) of 1-2 kHz, the radar is subject to both range-ambiguous precipitation returns and velocity aliasing. Experience shows that these are a major contributor to failures of the system's wind shear detection algorithms. Here we evaluate the degree of mitigation offered by existing phase diversity methods to these problems. Using optimized processing techniques, we analyze the performance of two particular phase codes that are best suited for application to TDWRs- random and SZ(8/64) [Sachidananda and Zrnic', [1999]- in the protection of weak-trip power, velocity, and spectral width estimates. Results from both simulated and real weather data indicate that the SZ(8/64) code generally outperforms the random code, except for protection of 1st trip from 5th trip interference. However, the SZ code estimates require a priori knowledge of out-of-trip spectral widths for censoring. This information cannot be provided adequately by a separate scan with a Pulse Repetition Frequency (PRF) low enough to unambiguously cover the entire range of detectable weather, because then the upper limit of measurable spectral width is only about 2 m/s . For this reason we conclude that SZ phase codes are not appropriate for TDWR use. For velocity ambiguity resolution, the random phase code could be transmitted at two PRFs on alternating dwells. Assuming the velocity changes little between two consecutive dwells, a Chinese remainder type of approach can be used to dealias the velocities. Strong ground clutter at close range, however, disables this scheme for gates at the beginning of the 2nd trip of the higher PRF. We offer an alternative scheme for range-velocity ambiguity mitigation: Multistaggered Pulse Processing (MSPP). Yielding excellent velocity dealiasing capabilities, the MSPP method should also provide protection from patchy, small-scale out-of-trip weather. To obtain maximum performance in both range and velocity dealiasing, we suggest that information from the initial low-PRF scan be used to decide the best waveform to transmit in the following scan-random phase code with alternating-dwell PRFs or MSPP. Such an adaptive approach presages future developments in weather radar, for example electronically scanned arrays allow selective probing of relevant weather events.
READ LESS

Summary

Range and velocity ambiguities pose significant data quality challenges for the Terminal Doppler Weather Radar (TDWR). For typical pulse repetition frequencies (PRFs) of 1-2 kHz, the radar is subject to both range-ambiguous precipitation returns and velocity aliasing. Experience shows that these are a major contributor to failures of the system's...

READ MORE