Publications
Corridor Integrated Weather System operation benefits 2002-2003 : initial estimates of convective weather delay reduction
Summary
Summary
The Corridor Integrated Weather System (CIWS) seeks to improve safety and reduce delay by providing accurate, automated, rapidly updated information on storm locations and echo tops along with two-hour high-resolution animated growth and decay convective storm forecasts. An operational benefits assessment was conducted using on-site observations of CIWS usage at...
Utilizing local terrain to determine targeted weather observation locations
Summary
Summary
Many of the recent conflicts where the United States (US) military forces have been deployed are regions that contain complex terrain (i.e. Korea, Kosovo, Afghanistan, and northern Iraq). Accurate weather forecasts are critical to the success of operations in these regions and are typically supplied by numerical weather prediction (NWP)...
An examination of wind shear alert integration at the Dallas/Ft. Worth International Airport (DFW)
Summary
Summary
The Dallas / Fort Worth International Airport (DFW) is one of the four demonstration system sites for the Integrated Terminal Weather System (ITWS). One of the primary benefits of the ITWS is a suite of algorithms that utilize data from the Terminal Doppler Weather Radar (TDWR) to generate wind shear...
Range-velocity ambiguity mitigation schemes for the enhanced Terminal Doppler Weather Radar
Summary
Summary
The Terminal Doppler Weather Radar (TDWR) radar data acquisition (RDA) subsystem is being replaced as part of a broader FAA program to improve the supportability of the system. An engineering prototype RDA is under development that will provide a modern, open-systems hardware platform and standards-compliant software. The new platform also...
Reducing severe weather delays in congested airspace with weather decision support for tactical air traffic management
Summary
Summary
Reducing congested airspace delays due to thunderstorms has become a major objective of the FAA due to the recent growth in convective delays. In 2000 and 2001 the key new initiative for reducing these convective weather delays was "strategic" traffic flow management (TFM) at time scales between 2 and 6...
Route selection decision support in convective weather: a case study of the effects of weather and operational assumptions on departure throughput
Summary
Summary
This paper presents a detailed study of a convective weather event affecting the northeastern United States on 19 April 2002: its impacts on departure throughput, the response of traffic managers and an analysis of the potential effects of decision support on system performance. We compare actual departure throughput to what...
The effect of topography on the initial condition sensitivity of a mesoscale model
Summary
Summary
Errors in NWP model forecasts are typically due to deficiencies in the model formulation, inaccuracies associated with the numerical integration techniques, and errors in the specification of initial conditions. This study investigates the latter of these three issues and, in particular, elucidates the errors in the initial conditions due to...
Accuracy of motion-compensated NEXRAD precipitation
Summary
Summary
A number of Federal Aviation Administration (FAA) aviation weather systems utilize Next Generation Weather Radar (NEXRAD) precipitation products including the Integrated Terminal Weather System (ITWS), Corridor Integrated Weather System (CIWS), Medium Intensity Airport Weather System (MIAWS), and the Weather and Radar Processor (WARP). The precipitation products from a NEXRAD [e.g...
Medium intensity airport weather system NEXRAD selection recommendations
Summary
Summary
Under Federal Aviation Administration (FAA) sponsorship, Lincoln Laboratory has developed a Medium Intensity Airport Weather System (MIAWS). MIAWS provides air traffic controllers at medium- intensity airports a real time color display of weather impacting the terminal airspace. The weather data comes from nearby Doppler weather surveillance radars, called Next Generation...
Evaluation of TDWR range-velocity ambiguity mitigation techniques
Summary
Summary
Range and velocity ambiguities pose significant data quality challenges for the Terminal Doppler Weather Radar (TDWR). For typical pulse repetition frequencies (PRFs) of 1-2 kHz, the radar is subject to both range-ambiguous precipitation returns and velocity aliasing. Experience shows that these are a major contributor to failures of the system's...