Publications
Tagged As
Forensic speaker recognition: a need for caution
Summary
Summary
There has long been a desire to be able to identify a person on the basis of his or her voice. For many years, judges, lawyers, detectives, and law enforcement agencies have wanted to use forensic voice authentication to investigate a suspect or to confirm a judgment of guilt or...
Cognitive services for the user
Summary
Summary
Software-defined cognitive radios (CRs) use voice as a primary input/output (I/O) modality and are expected to have substantial computational resources capable of supporting advanced speech- and audio-processing applications. This chapter extends previous work on speech applications (e.g., [1]) to cognitive services that enhance military mission capability by capitalizing on automatic...
Gaussian mixture models
Summary
Summary
A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of Gaussian component densities. GMMs are commonly used as a parametric model of the probability distribution of continuous measurements or features in a biometric system, such as vocal-tract related spectral features in a speaker...
Beyond frame independence: parametric modelling of time duration in speaker and language recognition
Summary
Summary
In this work, we address the question of generating accurate likelihood estimates from multi-frame observations in speaker and language recognition. Using a simple theoretical model, we extend the basic assumption of independent frames to include two refinements: a local correlation model across neighboring frames, and a global uncertainty due to...
Bridging the gap between linguists and technology developers: large-scale, sociolinguistic annotation for dialect and speaker recognition
Summary
Summary
Recent years have seen increased interest within the speaker recognition community in high-level features including, for example, lexical choice, idiomatic expressions or syntactic structures. The promise of speaker recognition in forensic applications drives development toward systems robust to channel differences by selecting features inherently robust to channel difference. Within the...
A multi-class MLLR kernel for SVM speaker recognition
Summary
Summary
Speaker recognition using support vector machines (SVMs) with features derived from generative models has been shown to perform well. Typically, a universal background model (UBM) is adapted to each utterance yielding a set of features that are used in an SVM. We consider the case where the UBM is a...
Classification methods for speaker recognition
Summary
Summary
Automatic speaker recognition systems have a foundation built on ideas and techniques from the areas of speech science for speaker characterization, pattern recognition and engineering. In this chapter we provide an overview of the features, models, and classifiers derived from these areas that are the basis for modern automatic speaker...
Speaker verification using support vector machines and high-level features
Summary
Summary
High-level characteristics such as word usage, pronunciation, phonotactics, prosody, etc., have seen a resurgence for automatic speaker recognition over the last several years. With the availability of many conversation sides per speaker in current corpora, high-level systems now have the amount of data needed to sufficiently characterize a speaker. Although...
A comparison of speaker clustering and speech recognition techniques for air situational awareness
Summary
Summary
In this paper we compare speaker clustering and speech recognition techniques to the problem of understanding patterns of air traffic control communications. For a given radio transmission, our goal is to identify the talker and to whom he/she is speaking. This information, in combination with knowledge of the roles (i.e...
A new kernel for SVM MLLR based speaker recognition
Summary
Summary
Speaker recognition using support vector machines (SVMs) with features derived from generative models has been shown to perform well. Typically, a universal background model (UBM) is adapted to each utterance yielding a set of features that are used in an SVM. We consider the case where the UBM is a...