Publications
Complex Network Effects on the Robustness of Graph Convolutional Networks
Summary
Summary
Vertex classification—the problem of identifying the class labels of nodes in a graph—has applicability in a wide variety of domains. Examples include classifying subject areas of papers in citation net-works or roles of machines in a computer network. Recent work has demonstrated that vertex classification using graph convolutional networks is...
Deep implicit coordination graphs for multi-agent reinforcement learning [e-print]
Summary
Summary
Multi-agent reinforcement learning (MARL) requires coordination to efficiently solve certain tasks. Fully centralized control is often infeasible in such domains due to the size of joint action spaces. Coordination graph based formalization allows reasoning about the joint action based on the structure of interactions. However, they often require domain expertise...
Control systems need software security too: cyber-physical systems and safety-critical application domains must adopt widespread effective software defenses
Summary
Summary
Low-level embedded control systems are increasingly being targeted by adversaries, and there is a strong need for stronger software defenses for such systems. The cyber-physical nature of such systems impose real-time performance constraints not seen in enterprise computing systems, and such constraints fundamentally alter how software defenses should be designed...
75,000,000,000 streaming inserts/second using hierarchical hypersparse GraphBLAS matrices
Summary
Summary
The SuiteSparse GraphBLAS C-library implements high performance hypersparse matrices with bindings to a variety of languages (Python, Julia, and Matlab/Octave). GraphBLAS provides a lightweight in-memory database implementation of hypersparse matrices that are ideal for analyzing many types of network data, while providing rigorous mathematical guarantees, such as linearity. Streaming updates...
Bayesian estimation of PLDA with noisy training labels, with applications to speaker verification
Summary
Summary
This paper proposes a method for Bayesian estimation of probabilistic linear discriminant analysis (PLDA) when training labels are noisy. Label errors can be expected during e.g. large or distributed data collections, or for crowd-sourced data labeling. By interpreting true labels as latent random variables, the observed labels are modeled as...
One giant leap for computer security
Summary
Summary
Today's computer systems trace their roots to an era of trusted users and highly constrained hardware; thus, their designs fundamentally emphasize performance and discount security. This article presents a vision for how small steps using existing technologies can be combined into one giant leap for computer security.
Discriminative PLDA for speaker verification with X-vectors
Summary
Summary
This paper proposes a novel approach to discrimina-tive training of probabilistic linear discriminant analysis (PLDA) for speaker verification with x-vectors. Model over-fitting is a well-known issue with discriminative PLDA (D-PLDA) forspeaker verification. As opposed to prior approaches which address this by limiting the number of trainable parameters, the proposed method...
Topological effects on attacks against vertex classification
Summary
Summary
Vertex classification is vulnerable to perturbations of both graph topology and vertex attributes, as shown in recent research. As in other machine learning domains, concerns about robustness to adversarial manipulation can prevent potential users from adopting proposed methods when the consequence of action is very high. This paper considers two...
Toward an autonomous aerial survey and planning system for humanitarian aid and disaster response
Summary
Summary
In this paper we propose an integrated system concept for autonomously surveying and planning emergency response for areas impacted by natural disasters. Referred to as AASAPS-HADR, this system is composed of a network of ground stations and autonomous aerial vehicles interconnected by an ad hoc emergency communication network. The system...
Automated discovery of cross-plane event-based vulnerabilities in software-defined networking
Summary
Summary
Software-defined networking (SDN) achieves a programmable control plane through the use of logically centralized, event-driven controllers and through network applications (apps) that extend the controllers' functionality. As control plane decisions are often based on the data plane, it is possible for carefully crafted malicious data plane inputs to direct the...