Publications

Refine Results

(Filters Applied) Clear All

A microburst prediction algorithm for the FAA Integrated Terminal Weather System

Published in:
SPIE, Vol. 2220, Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, 4-5 April 1994, pp. 194-204.

Summary

Lincoln Laboratory is developing a prototype of the Federal Aviation Administration (FAA) Integrated Terminal Weather System (ITWS) to provide improved aviation weather information in the terminal area by integrating data and products from various FAA and National Weather Service (NWS) sensors and weather information systems. The ITWS Microburst Prediction product is intended to provide and additional margin of safety for pilots in avoiding microburst wind shear hazards (Fig. 1). The product is envisioned for use by traffic managers, supervisors, controllers, and pilots (directly via datalink). Our objective is to accurately predict the onset of microburst wind shear several minutes in advance. The approach we have chosen in developing the ITWS Microburst Prediction algorithm emphasizes fundamental physical principles of thunderstorm evolution and downdraft development, incorporating heuristic and/or statistical methods as needed for refinement. Image processing and data fusion techniques are used to produce an "interest" image (Delanoy etal., 1991, 1992) that reveals developing downdrafts. We use Doppler radar data to identify regions of growing thunderstorms and probable regions of downdraft, and combine these with measures of the ambient temperature structure (height of the freezing level, lapse rate in the lower atmosphere; Wolfson 1990), total lightning flash rate, and storm motion to predict the microburst location, timing, and outflow strength. There is also a simple feedback system based on the results of the Microburst Detection algorithm that desensitizes prediction thresholds if false predictions are being reported. The following slides describe the preliminary ITWS Microburst Prediction algorithm design, and show examples of feature detector, and the algorithm output on one test case. Results from off-line testing on 17 days of data from Orlando are also presented.
READ LESS

Summary

Lincoln Laboratory is developing a prototype of the Federal Aviation Administration (FAA) Integrated Terminal Weather System (ITWS) to provide improved aviation weather information in the terminal area by integrating data and products from various FAA and National Weather Service (NWS) sensors and weather information systems. The ITWS Microburst Prediction product...

READ MORE

Connected components and temporal association in airport surface radar tracking

Published in:
SPIE, Vol. 2220, Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, 4-5 April 1994, pp. 357-379.

Summary

MIT Lincoln Laboratory, under sponsorship of the FAA, has installed a modified Raytheon pathfinder x-band marine radar at Logan Airport in Boston, Mass. and has developed a real- time surveillance system based on the pathfinder's digitized output. The surveillance system provides input to a safety logic system that will ultimately activate a set of runway status lights. This paper describes the portion of the surveillance system following the initial clutter- rejecting preprocessing, described elsewhere. The overall mechanism can be simply described as a temporal constant false alarm rate front end followed by binary morphological operations including connected components feeding a scan-to-scan tracker. However, a number of refinements have been added leading to a system which is close to being fieldable. Both the special difficulties and the current solutions are examined. The radar hardware as well as the computational environment are discussed. An overview of the clutter rejection preprocessing is given, as well as physical and processing related challenges associated with the data. Algorithmic description of the current system is presented and its real-time implementation outlined. Performance statistics and envisioned algorithmic improvements are presented.
READ LESS

Summary

MIT Lincoln Laboratory, under sponsorship of the FAA, has installed a modified Raytheon pathfinder x-band marine radar at Logan Airport in Boston, Mass. and has developed a real- time surveillance system based on the pathfinder's digitized output. The surveillance system provides input to a safety logic system that will ultimately...

READ MORE

Machine intelligent approach to automated gust front detection for Doppler weather radars

Published in:
SPIE, Vol. 2220, Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, 4-5 April 1994, pp. 182-193.

Summary

Automated gust front detection is an important component of the Airport Surveillance Radar with Wind Shear Processor (ASR-9 WSP) and Terminal Doppler Weather Radar (TDWR) systems being developed for airport terminal areas. Gust fronts produce signatures in Doppler radar imagery which are often weak, ambiguous, or conditional, making detection and continuous tracking of gust fronts challenging. Previous algorithms designed for these systems have provided only modest performance when compared against human observations. A Machine Intelligent Gust Front Algorithm (MIGFA) has been developed that makes use of two new techniques of knowledge-based signal processing originally developed in the context of automatic target recognition. The first of these, functional template correlation (FTC), is a generalized matched filter incorporating aspects of fuzzy set theory. The second technique is the use of "interest" as a medium for pixel-level data fusion. MIGFA was first developed for the ASR-9 WSP system. Its design and performance have been documented in a number of earlier reports. This paper focuses on the more recently developed TDWR MIGFA, describing the signal-processing techniques used and general algorithm design. A quantitative performance analysis using data collected during recent real-time testing of the TDWR MIGFA in Orlando, Florida is also presented. Results show that MIGFA substantially outperforms the gust front detection algorithm used in current TDWR systems.
READ LESS

Summary

Automated gust front detection is an important component of the Airport Surveillance Radar with Wind Shear Processor (ASR-9 WSP) and Terminal Doppler Weather Radar (TDWR) systems being developed for airport terminal areas. Gust fronts produce signatures in Doppler radar imagery which are often weak, ambiguous, or conditional, making detection and...

READ MORE

Radar images of Logan Airport and application in automated aircraft tracking

Published in:
SPIE, Vol. 2220, Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, 4-5 April 1994, pp. 316-327.

Summary

To enhance safety and expedite aircraft traffic control at airports, the Federal Aviation Administration (FAA) is in the process of developing automation aids for controllers and pilots. These automation improvements depend on reliable surveillance of the airport traffic, in the form of computerized target reports for all aircraft. One means of surveillance of the airport is primary radar. A short range radar of this type is called airport surface detection equipment or (ASDE). Lincoln Laboratory is participating in this development program by testing a system of surveillance and automation aids at Logan International Airport in Boston, Mass. This work is sponsored by the FAA. This paper describes the radar equipment being used for surface surveillance at Logan Airport and the characteristics of the radar images it produces. Techniques for automatic tracking of this radar data are also described along with a summary of the tracking performance that has been achieved. Two companion papers in this session relate to this same radar surveillance and provide more in-depth descriptions of the radar processing.
READ LESS

Summary

To enhance safety and expedite aircraft traffic control at airports, the Federal Aviation Administration (FAA) is in the process of developing automation aids for controllers and pilots. These automation improvements depend on reliable surveillance of the airport traffic, in the form of computerized target reports for all aircraft. One means...

READ MORE

Target detection using radar images of an airport surface

Published in:
SPIE, Vol. 2220, Sensing, Imaging, and Vision for Control and Guidance of Aerospace Vehicles, 4-5 April 1994, pp. 338-356.

Summary

Automation aids which increase the efficiency of the controller and enhance safety are being sought by the Federal Aviation Administration (FAA). This paper describes the target detection algorithms developed by the MIT Lincoln Laboratory as part of the airport surface traffic automation (ASTA) and runway surface safety light system (RSLS) programs sponsored by the FAA that were demonstrated at Logan International Airport in Boston, Mass. from September 1992 through December 1993. A companion paper to this conference describes the ASTA and RSLS system demonstration. Another companion paper describes the tracking algorithms. Real-time, parallel processing implementations of these surveillance algorithms are written in C++ on a Silicon Graphics Inc. Unix multiprocessor. The heavy reliance on commercial hardware, standard operating systems, object oriented design, and high-level computer languages allows a rapid transition from a research environment to a production environment.
READ LESS

Summary

Automation aids which increase the efficiency of the controller and enhance safety are being sought by the Federal Aviation Administration (FAA). This paper describes the target detection algorithms developed by the MIT Lincoln Laboratory as part of the airport surface traffic automation (ASTA) and runway surface safety light system (RSLS)...

READ MORE

Low altitude wind shear detection using airport surveillance radars

Author:
Published in:
Proc. 1994 IEEE Natl. Radar Conf., 29-31 March 1994, pp. 52-57.

Summary

This paper describes an enhanced weather processor for the Federal Aviation Administration's Airport Surveillance Radar (ASR-9) that will include Doppler wind estimation for the detection of low altitude wind shear, scan-to-scan tracking to provide estimates of the speed and direction of storm movement and suppression' of spurious weather reports currently generated by the ASR-9's six-level weather channel during episodes of anomalous radar energy propagation (AP). This ASR-9 Wind Shear Processor (WSP) will be implemented as a retrofit to the ASR-9 through the addition of interfaces, receiving chain hardware and high-speed digital processing and display equipment. Thunderstorm activity in terminal airspace (the volume extending approximately 30 nmi from an airport and to 15,000 feet altitude) is an obvious safety issue and makes a significant overall contribution to delay in the United States commercial aviation industry. Analysis and on-line testing of the prototype ASR-9 WSP has confirmed that the system can provide operationally beneficial detection of low-altitude wind shear phenomena and enhanced weather situational awareness for Air Traffic Control teams.
READ LESS

Summary

This paper describes an enhanced weather processor for the Federal Aviation Administration's Airport Surveillance Radar (ASR-9) that will include Doppler wind estimation for the detection of low altitude wind shear, scan-to-scan tracking to provide estimates of the speed and direction of storm movement and suppression' of spurious weather reports currently...

READ MORE

Variable-PRI processing for meteorologic Doppler radars

Published in:
1994 IEEE Natl. Radar Conf., 29-31 March 1994, pp. 85-90.

Summary

In this communication we described how, with nonuniform sampling, the concept of bandlimited extrapolation can be used to obtain unambiguous Doppler velocity estimates in the supra-Nyquist region. The proposed method coherently processes a multi-PRI sample using a generalized form of periodogram analysis. The work is described in the context of meteorologic Doppler processing and includes a discussion of effective suppression for stationary ground clutter when multi-PRI schemes are used.
READ LESS

Summary

In this communication we described how, with nonuniform sampling, the concept of bandlimited extrapolation can be used to obtain unambiguous Doppler velocity estimates in the supra-Nyquist region. The proposed method coherently processes a multi-PRI sample using a generalized form of periodogram analysis. The work is described in the context of...

READ MORE

Extrapolating storm location using the Integrated Terminal Weather System (ITWS) storm motion algorithm

Published in:
MIT Lincoln Laboratory Report ATC-208

Summary

Storm Motion (SM) is a planned Initial Operational Capability (IOC) algorithm of the FAA's Integrated Terminal Weather System (ITWS). As currently designed, this algorithm will track the movement of storms/cells and convey this tracking information to the ITWS user by means of a graphic display of vectors (for direction) with accompanying numeric reports of storm speed, rounded to the nearest 5 nmi/hr increment. Recognizing that there are occasions when ITWS users could benefit from a more extended product format, Storm Extrapolated Position (SEP) was conceived to supplement the SM product and thereby increase the latter's accessibility as a planning aid. This communication describes a prototype SEP design along with an analysis of its accuracy and observed performance during 1993 ITWS demnstrations in Orlando (FL) and Dallas (TX).
READ LESS

Summary

Storm Motion (SM) is a planned Initial Operational Capability (IOC) algorithm of the FAA's Integrated Terminal Weather System (ITWS). As currently designed, this algorithm will track the movement of storms/cells and convey this tracking information to the ITWS user by means of a graphic display of vectors (for direction) with...

READ MORE

The polygon-ellipse method of data compression of weather maps

Published in:
MIT Lincoln Laboratory Report ATC-213

Summary

Providing an accurate picture of the weather conditions in the pilot's area of interest could be a highly useful application for ground-to-air data links. The problem with using data links to transmit weather pictures is the large number of bits required to exactly specify a weather image. To make transmission of weather maps practical, a means must be found to compress this image. The Polygon-Ellipse (PE) encoding algorithm developed in this report represents weather regions as ellipses, polygons, and exact patterns. The actual ellipse and polygon parameters are encoded and transmitted; the decoder algorithm redraws the shape from their encoded parameter values and fills in the included weather pixels. Special coding techniques are used in PE to compress the encoding of the shape parameters to achieve further overall compression. The PE algorithm contains procedures for gracefully degrading the fidelity of the transmitted image when necessary to meet a specified bit limit. Pictorial examples of the operation of this algorithm on both Terminal Doppler Weather Radar (TDWR) and ASR-9 radar-generated weather images are presented.
READ LESS

Summary

Providing an accurate picture of the weather conditions in the pilot's area of interest could be a highly useful application for ground-to-air data links. The problem with using data links to transmit weather pictures is the large number of bits required to exactly specify a weather image. To make transmission...

READ MORE

Terminal Weather Message Demonstration at Orlando, FL, Summer 1993

Published in:
MIT Lincoln Laboratory Report ATC-210

Summary

A successful demonstration of providing a text-based message via VHF data link (ACARS) was carried out at Orlando, FL during the summer of 1993. Five airlines participated in the three-month demonstration, which included an average of 145 Terminal Weather message requests per day. During a heavily-impacted weather day, a total of 220 Terminal Weather requests were made. The format of the Terminal Weather message was developed by an ad hoc committee of pilots, dispatchers, controllers and researchers. The format required a balance between the need for including important information and the need to fit the information into a limited number of characters. The approach was to divide the message into several blocks and to prioritize the potential message elements by importance and immediacy. The most important and timely elements are listed first, and the others appear only if more important elements are not present or else were deleted altogether. Pilot reaction to the demonstration was assessed from questionnaire responses. Overall, pilots thought that the system should be deployed operationally and found that it increased situational awareness. They felt that it provided some help in decision making and did not adversely affect cockpit workload. They also strongly endorsed the need for a graphical version of the Terminal Weather service. Controllers were initially concerned that the data link demonstration would result in increased radio traffic and concomitant controller workload. Prior to the demonstration, changes were made in the Terminal Weather message format to help allay these concerns. Consequently, controllers were surprosed to find that requests for weather information actually decreases over what they normally would expect during a period of heavy weather impact. Thus, evidence was obtained that delivery of Terminal Weather information by data link could decrease controller workload. Dispatchers took a strong and unanticipated interest in the Terminal Weather message. The dispatchers for one airline used the Terminal Weather message to monitor weather conditions at Orlando during a period of heavy weather impact. Special messages also were sent to dispatchers to alert them when wind shear or microburst hazards initially impacted the Orlando airport. Additional demonstration of the Terminal Weather message service are planned for the summer of 1994 at Memphis, TN and Orlando, FL. Results of hte summer 1993 demonstration are being used to make improvements to the message content. A demonstration of a grpahical version of the Terminal Weather message is also planned.
READ LESS

Summary

A successful demonstration of providing a text-based message via VHF data link (ACARS) was carried out at Orlando, FL during the summer of 1993. Five airlines participated in the three-month demonstration, which included an average of 145 Terminal Weather message requests per day. During a heavily-impacted weather day, a total...

READ MORE