Publications
Tagged As
Moving clutter spectral filter for Terminal Doppler Weather Radar
Summary
Summary
Detecting low-altitude wind shear in support of aviation safety and efficiency is the primary mission of the Terminal Doppler Weather Radar (TDWR). The wind-shear detection performance depends directly on the quality of the data produced by the TDWR. At times the data quality suffers from the presence of clutter. Al-though...
A log-frequency approach to the identification of the Wiener-Hammerstein model
Summary
Summary
In this paper we present a simple closed-form solution to the Wiener-Hammerstein (W-H) identification problem. The identification process occurs in the log-frequency domain where magnitudes and phases are separable. We show that the theoretically optimal W-H identification is unique up to an amplitude, phase and delay ambiguity, and that the...
2-D processing of speech for multi-pitch analysis.
Summary
Summary
This paper introduces a two-dimensional (2-D) processing approach for the analysis of multi-pitch speech sounds. Our framework invokes the short-space 2-D Fourier transform magnitude of a narrowband spectrogram, mapping harmonically related signal components to multiple concentrated entities in a new 2-D space. First, localized time-frequency regions of the spectrogram are...
Large-scale analysis of formant frequency estimation variability in conversational telephone speech
Summary
Summary
We quantify how the telephone channel and regional dialect influence formant estimates extracted from Wavesurfer in spontaneous conversational speech from over 3,600 native American English speakers. To the best of our knowledge, this is the largest scale study on this topic. We found that F1 estimates are higher in cellular...
Compressed sensing arrays for frequency-sparse signal detection and geolocation
Summary
Summary
Compressed sensing (CS) can be used to monitor very wide bands when the received signals are sparse in some basis. We have developed a compressed sensing receiver architecture with the ability to detect, demodulate, and geolocate signals that are sparse in frequency. In this paper, we evaluate detection, reconstruction, and...
Polyphase nonlinear equalization of time-interleaved analog-to-digital converters
Summary
Summary
As the demand for higher data rates increases, commercial analog-to-digital converters (ADCs) are more commonly being implemented with multiple on-chip converters whose outputs are time-interleaved. The distortion generated by time-interleaved ADCs is now not only a function of the nonlinear behavior of the constituent circuitry, but also mismatches associated with...
Extending the dynamic range of RF receivers using nonlinear equalization
Summary
Summary
Systems currently being developed to operate across wide bandwidths with high sensitivity requirements are limited by the inherent dynamic range of a receiver's analog and mixed-signal components. To increase a receiver's overall linearity, we have developed a digital NonLinear EQualization (NLEQ) processor which is capable of extending a receiver's dynamic...
A polyphase nonlinear equalization architecture and semi-blind identification method
Summary
Summary
In this paper, we present an architecture and semiblind identification method for a polyphase nonlinear equalizer (pNLEQ). Such an equalizer is useful for extending the dynamic range of time-interleaved analog-to-digital converters (ADCs). Our proposed architecture is a polyphase extension to other architectures that partition the Volterra kernel into small nonlinear...
The cube coefficient subspace architecture for nonlinear digital predistortion
Summary
Summary
In this paper, we present the cube coefficient subspace (CCS) architecture for linearizing power amplifiers (PAs), which divides the overparametrized Volterra kernel into small, computationally efficient subkernels spanning only the portions of the full multidimensional coefficient space with the greatest impact on linearization. Using measured results from a Q-Band solid...
PVTOL: providing productivity, performance, and portability to DoD signal processing applications on multicore processors
Summary
Summary
PVTOL provides an object-oriented C++ API that hides the complexity of multicore architectures within a PGAS programming model, improving programmer productivity. Tasks and conduits enable data flow patterns such as pipelining and round-robining. Hierarchical maps concisely describe how to allocate hierarchical arrays across processor and memory hierarchies and provide a...