Publications
Automated microburst wind-shear prediction
Summary
Summary
We have developed an algorithm that automatically and reliably predicts microburst wind shear. The algorithm, developed as part of the FAA Integrated Terminal Weather System (ITWS), can provide warnings several minutes in advance of hazardous low-altitude wind-shear conditions. Our approach to the algorithm emphasizes fundamental principles of thunderstorm evolution and...
A microburst prediction algorithm for the FAA Integrated Terminal Weather System
Summary
Summary
Lincoln Laboratory is developing a prototype of the Federal Aviation Administration (FAA) Integrated Terminal Weather System (ITWS) to provide improved aviation weather information in the terminal area by integrating data and products from various FAA and National Weather Service (NWS) sensors and weather information systems. The ITWS Microburst Prediction product...
MDCRS: aircraft observations collection and uses
Summary
Summary
The Meteorological Data Collection and Reporting System (MDCRS) was designed for the Federal Aviation Administration (FAA) and the National Weather Service (NWS) to collect, decode, store and disseminate aircraft meteorological observations. The system, targeted primarily at improving upper air wind forecasts, was fielded in 1991.
Adjoint-method retrievals of microburst winds from TDWR data
Summary
Summary
The simple adjoint (SA) method of Qiu and Xu (1992, henceforth referred to as QX92) was recently upgraded and tested with the Phoenix-II data for retrieving the low-altitude winds from single-Doppler scans (Xu et al. 1993a,b henceforth referred to as XQY93a,b). The major results can be briefly reviewed as follows...
Quantifying airport terminal area weather surveillance requirements
Summary
Summary
The Federal Aviation Administration (FAA) Terminal Area Surveillance System (TASS) research, engineering, and development program was initiated in part to address future weather sensing needs in the terminal area. By the early 21st century, planned systems such as the Terminal Doppler Weather Radar (TDWR) and Airport Surveillance Radar-9 (ASR-9) will...
Contributions to the American Meteorological Society's 26th International Conference on Radar Meteorology
Summary
Summary
Eleven papers contributed by the Lincoln Laboratory Weather Sensing Group to the American Meteorological Society's 26th International Conference on Radar Meteorology, to be held May 24-28, 1993 in Norman, Oklahoma, are compiled in this volume. The work reported was sponsored by several FAA programs, including Terminal Doppler Weather Radar (TDWR)...
Summary of triple Doppler data, Orlando 1991
Summary
Summary
Under Federal Aviation Administration (FAA) sponsorship, Lincoln Laboratory conducted an aviation weather hazard measurement and operational demonstration program during the summer of 1991 near the Orlando International Airport. Three Doppler radars were sited in a triangle around the airport, allowing triple Doppler coverage of thunderstorms and microbursts occurring there. This...
A hybrid Cartesian windfield synthesis technique using a triple Doppler radar network
Summary
Summary
The estimation of air and particle motions in storms from multiple Doppler radar measurement is a long standing problem in radar meteorology. Our research interest in understanding the relationship of electrical change generation processes above the freezing level to thunderstorm life cycle, and in the detailed quantification of the eventual...
Weather information requirements for terminal air traffic control automation
Summary
Summary
Aviation operations in the airport terminal area, where flights converge from a number of directions onto one or two active runways, create a fundamental limitation on the capacity of the national airspace system. The U.S. Federal Aviation Administration (FAA) has recognized that the throughput of existing terminals can be increased...
Characteristics of thunderstorm-generated low altitude wind shear: a survey based on nationwide Terminal Doppler Weather Radar testbed measurements
Summary
Summary
The characteristics of microbursts and gust fronts, two forms of aviation-hazardous low altitude wind shear, are presented. Data were collected with a prototype terminal Doppler weather radar and a network of surface weather stations in Memphis, Huntsville, Denver, Kansas City, and Orlando. Regional differences and features that could be exploited...