Publications
A wafer-scale 3-D circuit integration technology
Summary
Summary
The rationale and development of a wafer-scale three-dimensional (3-D) integrated circuit technology are described. The essential elements of the 3-D technology are integrated circuit fabrication on silicon-on-insulator wafers, precision wafer-wafer alignment using an in-house-developed alignment system, low-temperature wafer-wafer bonding to transfer and stack active circuit layers, and interconnection of the...
Laser radar imager based on 3D integration of Geiger-mode avalanche photodiodes with two SOI timing circuit layers
Summary
Summary
We have developed focal-plane arrays and laser-radar (ladar) imaging systems based on Geiger-mode avalanche photodiodes (APDs) integrated with high-speed all-digital CMOS timing circuits. A Geiger-mode APD produces a digital pulse upon detection of a single photon. This pulse is used to stop a fast digital counter in the pixel circuit...
Megapixel CMOS image sensor fabricated in three-dimensional integrated circuit technology
Summary
Summary
In this paper a 3D integrated 1024x1024, 8um pixel visible image sensor fabricated with oxide-to-oxide wafer bonding and 2-um square 3-D-vias in every pixel is presented. The 150mm wafer technology integrates a low-leakage, deep-depletion, 100% fill factor photodiode layer to a 3.3-V, 0.35-um gate length fully depleted (FD) SOI CMOS...
Monolithic 3.3V CCD/SOI-CMOS Imager Technology
Summary
Summary
We have developed a merged CCD/SOI-CMOS technology that enables the fabrication of monolithic, low-power imaging systems on a chip. The CCD's, fabricated in the bulk handle wafer, have charge-transfer inefficiencies of about 1x10(-5) and well capacities of more than 100,000 electrons with 3.3-V clocks and 8x8um pixels. Fully depleted 0.35pm...
SOI wafer selection for CCD/SOI-CMOS technology [Abstract]
Summary
Summary
We have developed a process that monolithically integrates fully depleted SOI CMOS (FDSOI) with high-performance CCD image sensors. This integrated technology that enables charged-coupled devices (CCD's) to be in close proximity to, yet isolated from, FDSOI circuits. This approach exploits both the advantages of FDSOI (fast, low-power CMOS with potentially...