Publications

Refine Results

(Filters Applied) Clear All

Lincoln Laboratory Evaluation of TCAS II logic version 6.04a, appendices, volume II

Author:
Published in:
MIT Lincoln Laboratory Report ATC-240,II

Summary

This report documents the Lincoln Laboratory evaluation of the Traffic Alert and Collision Avoidance System II (TCAS II) logic version 6.04a. TCAS II is an airborne collision avoidance system required since 30 December 1993 by the FAA on all air carrier aircraft with more than 30 passenger seats operating in U.S. airspace. Version 6.04a is a logic version mandated by the FAA by 30 December 1994 in order to correct a potential safety problem in earlier versions and to make the TCAS logic more compatible with the air traffic control system. Lincoln Laboratory evaluated the logic by examining approximately two million simulated pairwise TCAS-TCAS encounters, derived from actual aircraft tracks recorded in U.S. airspace. The main goals of the evaluation effort were: (1) to determine if version 6.04a successfully corrected the potential safety problem without introducing new problems; (2) to detect and explain any areas of poor performance; and (3) to understand the performance limits of the logic. Five analysis programs were written to aid in the evaluation, and these programs are described in the report. There were three phases of the evaluation corresponding to the above three goals. For each phase, the report gives an overview of the evaluation approach taken, a description of the results, and a summary. A description of follow-on activities plus overall conclusions and recommendations are given at the end of the report.
READ LESS

Summary

This report documents the Lincoln Laboratory evaluation of the Traffic Alert and Collision Avoidance System II (TCAS II) logic version 6.04a. TCAS II is an airborne collision avoidance system required since 30 December 1993 by the FAA on all air carrier aircraft with more than 30 passenger seats operating in...

READ MORE

Selected abstracts on aviation weather hazard research

Author:
Published in:
MIT Lincoln Laboratory Report ATC-242

Summary

This paper consists of bibliographic information and abstracts for literature on the topics of weather-related aviation hazards. These abstracts were selected from reports written for the ASR-9, ITWS, TDWR programs, sponsored by the Federal Aviation Administration (FAA), and the Wake Vortex program, sponsored by NASA Langley Research Center. All research was performed by MIT Lincoln Laboratory; some research was performed in collaboration with other organizations. These abstracts were compiled to allow participants in the ASR-9 program to conduct research related to their design, development, and production effort. The abstracts and bibliographic information were retrieved from several commercial databases (INSPEC, Ei Compendex*Plus, Aerospace Database, and NTIS) through an open literature search at the Lincoln Laboratory library. Sufficient information is included for readers to obtain documents of interest to them, but documents will not be provided directly by Lincoln Laboratory.
READ LESS

Summary

This paper consists of bibliographic information and abstracts for literature on the topics of weather-related aviation hazards. These abstracts were selected from reports written for the ASR-9, ITWS, TDWR programs, sponsored by the Federal Aviation Administration (FAA), and the Wake Vortex program, sponsored by NASA Langley Research Center. All research...

READ MORE

Automated storm tracking for terminal air traffic control

Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 427-448.

Summary

Good estimates of storm motion are essential to improved air traffic control operations during times of inclement weather. Automating such a service is a challenge, however, because meteorological phenomena exist as complex distributed systems that exhibit motion across a wide spectrum of scales. Even when viewed from a fixed perspective, these evolving dynamic systems can test the extent of our definition of motion, as well as any attempt at automated tracking of this motion. Image-based motion detection and processing appear to provide the best route toward robust performance of an automated tracking system.
READ LESS

Summary

Good estimates of storm motion are essential to improved air traffic control operations during times of inclement weather. Automating such a service is a challenge, however, because meteorological phenomena exist as complex distributed systems that exhibit motion across a wide spectrum of scales. Even when viewed from a fixed perspective...

READ MORE

The Integrated Terminal Weather System terminal winds product

Author:
Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 475-502.

Summary

The wind in the airspace around an airport impacts both airport safety and operational efficiency. Knowledge of the wind helps controllers and automation systems merge streams of traffic; it is also important for the prediction of storm growth and decay, burn-off of fog and lifting of low ceilings, and wake vortex hazards. This knowledge is provided by the Integrated Terminal Weather System (ITWS) gridded wind product, or Terminal Winds. The Terminal Winds product combines data from a national numerical weather-prediction model, called the Rapid Update Cycle, with observations from ground stations, aircraft reports, and Doppler weather radars to provide estimates of the horizontal wind field in the terminal area. The Terminal Winds analysis differs from previous real-time winds-analysis systems in that it is dominated by Doppler weather-radar data. Terminal Winds uses an analysis called cascade of scales and a new winds-analysis technique based on least squares to take full advantage of the information contained in the diverse data set available in an ITWS. The weather radars provide sufficiently fine-scale winds information to support a 2-km horizontal-resolution analysis and a five-minute update rate. A prototype of the Terminal Winds analysis system was tested at Orlando International Airport in 1992, 1993, and 1995, and at Memphis International Airport in 1994. The field operations featured the first real-time winds analysis combining data from the Federal Aviation Administration TDWR radar and the National Weather Service NEXRAD radar. The evaluation plan is designed to capture both the overall system performance and the performance during convective weather, when the fine-scale analysis is expected to show its greatest benefit.
READ LESS

Summary

The wind in the airspace around an airport impacts both airport safety and operational efficiency. Knowledge of the wind helps controllers and automation systems merge streams of traffic; it is also important for the prediction of storm growth and decay, burn-off of fog and lifting of low ceilings, and wake...

READ MORE

Controller-human interface design for the final approach spacing tool

Published in:
Proc. IFAC Man-Machine Systems Conf., 27-29 June 1995, pp. 559-564.

Summary

The Federal Aviation Administration is developing a set of software tools, known as the Center-TRACON Automation System (CTAS) to assist air traffic controllers in their management and control tasks. CTAS originated at National Aeronautics and Space Administration (NASA) Ames Research Center, where prototypes continue to evolve. In parallel, Massachusetts Institute of Technology/Lincoln Laboratory (MIT/LL) is refining and testing the software, including the Computer-Human Interface (CHI). This paper focuses on the CHI designed by MIT/LL for the Final Approach Spacing Tool (FAST) part of CTAS. The FAST design approach, CHI development and operational concept is presented.
READ LESS

Summary

The Federal Aviation Administration is developing a set of software tools, known as the Center-TRACON Automation System (CTAS) to assist air traffic controllers in their management and control tasks. CTAS originated at National Aeronautics and Space Administration (NASA) Ames Research Center, where prototypes continue to evolve. In parallel, Massachusetts Institute...

READ MORE

TCAS III bearing error evaluation

Published in:
MIT Lincoln Laboratory Report ATC-231

Summary

TCAS III seeks to enhance TCAS II by providing resolution advisory (RA) capability in the horizontal plane. Additionally, elimination of nuisance RAs through the use of miss distance filtering (MDF) are sought to make TCAS more compatible within the airspace. Both functions (horizontal RAs and MDF) are enabled with accurate estimates of the horizontal miss distance. TCAS III estimates of miss distance rely on range and bearing measurements derived from intruder aircraft replies. Large errors in the TCAS bearing measurement can be introduced by the airframe structure and other antennas in the vicinity of the TCAS antenna. These large bearing errors can result in large miss distance estimation errors, which will directly affect the performance of the horizontal RA and MDF operation. In evaluating the performance of the bearing measurements, measurements of the bearing error were used in a simulation of TCAS III surveillance and collision avoidance functions to assess their effect on performance. The performance was evaluated by examining (1) the expected percentage of horizontal RAs issued, (2) the expected reduction in nuisance RAs by the MDF, and (3) the reliability of the monitoring process during a horizontal RA maneuver.
READ LESS

Summary

TCAS III seeks to enhance TCAS II by providing resolution advisory (RA) capability in the horizontal plane. Additionally, elimination of nuisance RAs through the use of miss distance filtering (MDF) are sought to make TCAS more compatible within the airspace. Both functions (horizontal RAs and MDF) are enabled with accurate...

READ MORE

GPS-squitter channel access analysis

Published in:
MIT Lincoln Laboratory Report ATC-230

Summary

GPS-Squitter is a system concept that merges the capabilities of Automatic Dependent Surveillance (ADS) and the Mode S beacon radar. The result is an integrated concept for seamless surveillance and data link that permits equipped aircraft to participate in ADS and/or beacon ground environments, offering many possibilities for transition from a beacon to an ADS-based environment. A number of choices exist in the selection of the squitter channel access protocol, including the access technique (i.e., random or organized), as well as such issues as the rate of squitter transmissions and whether they are fixed or variable. This report provides an analysis of the performance of the channel access protocol selected for GPS-Squitter compared with other alternative approaches. The results of this analysis indicate that the performance of the selected protocol is superior to the defined alternatives.
READ LESS

Summary

GPS-Squitter is a system concept that merges the capabilities of Automatic Dependent Surveillance (ADS) and the Mode S beacon radar. The result is an integrated concept for seamless surveillance and data link that permits equipped aircraft to participate in ADS and/or beacon ground environments, offering many possibilities for transition from...

READ MORE

The enhanced Airborne Measurement Facility recording system

Author:
Published in:
MIT Lincoln Laboratory Report ATC-228

Summary

The Airborne Measurement Facility (AMF) is a data collection system that receives and records pulse and other information on the 1030/1090-MHz frequencies used by the FAA's secondary surveillance radar and collision avoidance systems. These systems include the Air Traffic Control Radar Beacon System (ATCRBS), the Mode Select (Mode S) Beacon System, and the Traffic Alert and Collision Avoidance System (TCAS). Designed and constructed by MIT Lincoln Laboratory in the 1970s, this unique measurement tool has been used to conduct advanced research in beacon-based air traffic control (ATC) over the past 20 years. The original AMF included a recorder capable of recording at the maximum rate of 2 Mbits/sec. Although this recording system worked well, it had become difficult to maintain in recent years. In 1993, the Air Traffic Surveillance Group, with support from the FAA, decided to incorporate the latest tape recording technology into an enhanced AMF recording system. The main purpose of this report is to provide guidance to analysts for AMF operation and data analysis. Finally, this report complements an AMF User's Manual, which is a more detailed document for using and maintaining the AMF.
READ LESS

Summary

The Airborne Measurement Facility (AMF) is a data collection system that receives and records pulse and other information on the 1030/1090-MHz frequencies used by the FAA's secondary surveillance radar and collision avoidance systems. These systems include the Air Traffic Control Radar Beacon System (ATCRBS), the Mode Select (Mode S) Beacon...

READ MORE

ITWS gridded winds product

Author:
Published in:
Proc. Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 384-389.

Summary

The Terminal Winds analysis technique was developed to take advantage of the Doppler information available in the terminal area. This technique, Optimal Estimation (OE), uses a minimum error variance technique (least squares) and is closely related to both the state-of-the-art operational non-Doppler winds analysis technique, Optimal Interpolation (OI) (Gandin, 1963) (Daly, 1991), and standard multiple Doppler techniques (Armijo, 1969). This technique was evaluated on data collected in 1992-1993 in Orlando FL, and demonstrated in real time in the Orlando testbed during the summer of 1993 and in the Memphis testbed during the summer of 1994.
READ LESS

Summary

The Terminal Winds analysis technique was developed to take advantage of the Doppler information available in the terminal area. This technique, Optimal Estimation (OE), uses a minimum error variance technique (least squares) and is closely related to both the state-of-the-art operational non-Doppler winds analysis technique, Optimal Interpolation (OI) (Gandin, 1963)...

READ MORE

Overview of 1994 Memphis Wake Vortex testing program

Published in:
Proc. Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 515-520.

Summary

Significant restrictions currently exist in the air traffic control system due to wake vortex considerations. Eliminating or reducing these restrictions would yield increased capacity, decreased delays and significant cost savings (Evans & Welch, 1991). These improvements would be especially desirable at high traffic airports which cannot expand (e.g., Boston, JFK, LaGuardia, Newark, Washington National, O'Hare, etc.). However, scientific uncertainty about wake vortex behavior under various weather conditions is a major concern. The current wake vortex restrictions me normally very conservative but could be insufficient under certain transient atmospheric conditions. A successful adaptive wake vortex advisory system must be able to 1) monitor for unsafe conditions, 2) predict wake vortex behavior over 2&30 minutes in the future and 3) provide an interface to air traffic controllers. Operational implementation of such a system will involve synergism between the Wake Vortex (WV), Integrated Terminal Weather System (ITWS) and Terminal Air Traffic Control Automation (TATCA) programs. The Wake Vortex program is a new effort at Lincoln Laboratory sponsored by NASA Langley Research Center in cooperation with the FAA. The joint NASA/FAA/Lincoln program seeks to aid in resolving wake vortex behavior issues as a function of the weather environment with a series of field measurements. The field measurements will include obtaining aircraft, meteorological and wake vortex data in an operational airport environment. The data collected will support efforts at NASA and elsewhere to validate wake vortex behavior models, aircraft/vortex interaction and atmospheric diagnosis/prognosis methods. The first of these field measurements is scheduled for the fall of 1994 at the Memphis International Airport.
READ LESS

Summary

Significant restrictions currently exist in the air traffic control system due to wake vortex considerations. Eliminating or reducing these restrictions would yield increased capacity, decreased delays and significant cost savings (Evans & Welch, 1991). These improvements would be especially desirable at high traffic airports which cannot expand (e.g., Boston, JFK...

READ MORE