Publications
Gigahertz (GHz) hard X-ray imaging using fast scintillators
Summary
Summary
Gigahertz (GHz) imaging technology will be needed at high-luminosity X-ray and charged particle sources. It is plausible to combine fast scintillators with the latest picosecond detectors and GHz electronics for multi-frame hard X-ray imaging and achieve an inter-frame time of elss than 10 ns. The time responses and light yield...
Slab-coupled optical waveguide (SCOW) devices and photonic integrated circuits (PICs)
Summary
Summary
We review recent advances in the development of slab-coupled optical waveguide (SCOW) devices, progress toward a flexible photonic integration platform containing both conventional high-confinement and SCOW ultra-low confinement devices, and applications of this technology.
Pixel-processing imager development for directed energy applications
Summary
Summary
Tactical high-energy laser (HEL) systems face a range of imaging-related challenges in wavefront sensing, acquiring and tracking targets, selecting the HEL aimpoint, and assessing lethality. Accomplishing these functions in a timely fashion may be limited by competing requirements on total field of regard, target resolution, signal to noise, and focal...
Stepped notch antenna array used as a low thermal resistance heat sink
Summary
Summary
A stepped notch antenna at Ku-band is developed to provide a thermal heat sink for active arrays. The antenna with forced air cooling provides up to 0.4 degrees C/W of thermal resistance. The antenna integration with a printed circuit board allows for high volume surface mount assembly of active devices.
A tunable AC atom interferometer magnetometer
Summary
Summary
We demonstrate an atom interferometer designed to measure magnetic fields and field gradients. Here, we study various pulse sequences and show how they can be manipulated to filter unwanted frequencies and to enhance desired frequencies.
Single event transients in digital CMOS - a review
Summary
Summary
The creation of soft errors due to the propagation of single event transients (SETs) is a significant reliability challenge in modern CMOS logic. SET concerns continue to be exacerbated by Moore's Law technology scaling. This paper presents a review of digital single event transient research, including: a brief historical overview...
High-voltage GaN-on-silicon Schottky diodes
Summary
Summary
M/A-COM Technology Solutions has continuing joint development efforts sponsored by the Department of Energy with MIT main campus and MIT Lincoln Laboratory to develop GaN-on-silicon two and three-terminal high-voltage/high current switching devices. The initial developmental goals were for a Schottky diode that has a reverse breakdown blocking voltage of >600...
Single-mode tapered quantum cascade lasers
Summary
Summary
We demonstrate tapered quantum cascade lasers monolithically integrated with a distributed Bragg reflector acting as both a wavelength-selective back mirror and a transverse mode filter. Each of the 14 devices operates at a different wavelength between 9.2 and 9.7 um, where nine devices feature single-mode operation at peak powers between...
High power (>5 W) lambda ~9.6 um tapered quantum cascade lasers grown by OMVPE
Summary
Summary
AlInAS/GaInAs superlattices (SLs) with barrier and well layers of various thicknesses were grown by organometallic vapor phase epitaxy to optimize growth of quantum cascade lasers (QCLs). High-resolution x-ray diffraction data of nominally lattice-matched SLs show a systematic shift toward more compressively strained SLs as the barrier/well layer thicknesses are decreased...
High voltage GaN-on-silicon HEMT
Summary
Summary
M/A-COM Technology Solutions has continued in the joint development efforts sponsored by the Department of Energy with MIT main campus amd MIT Lincoln Labs to develop GaN on silicon three terminal high voltage/high current HEMT switching devices. The first year developmental goals were for a three terminal structure that has...