Publications

Refine Results

(Filters Applied) Clear All

A human factors approach to the development and evaluation of the Graphical Weather Service

Published in:
14th AIAA/IEEE Digital Avionics Systems Conf., 5-9 November 1995, pp. 264-269.

Summary

With the sponsorship of the Federal Aviation Administration, MIT Lincoln Laboratory is developing the Graphical Weather Service (GWS), a data link application that provides near-real-time ground-based weather information to pilots. Through the use of GWS, the pilot will be able to access both graphical and text weather information for any location in the contiguous United States. In-cockpit access to near-real-time weather information may substantially affect the situational awareness and subsequent decision making of pilots. In developing and evaluating this service, a human factors approach has been taken. This paper is an overview of the human factors activities performed in the development and evaluation of GWS.
READ LESS

Summary

With the sponsorship of the Federal Aviation Administration, MIT Lincoln Laboratory is developing the Graphical Weather Service (GWS), a data link application that provides near-real-time ground-based weather information to pilots. Through the use of GWS, the pilot will be able to access both graphical and text weather information for any...

READ MORE

Automated storm tracking for terminal air traffic control

Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 427-448.

Summary

Good estimates of storm motion are essential to improved air traffic control operations during times of inclement weather. Automating such a service is a challenge, however, because meteorological phenomena exist as complex distributed systems that exhibit motion across a wide spectrum of scales. Even when viewed from a fixed perspective, these evolving dynamic systems can test the extent of our definition of motion, as well as any attempt at automated tracking of this motion. Image-based motion detection and processing appear to provide the best route toward robust performance of an automated tracking system.
READ LESS

Summary

Good estimates of storm motion are essential to improved air traffic control operations during times of inclement weather. Automating such a service is a challenge, however, because meteorological phenomena exist as complex distributed systems that exhibit motion across a wide spectrum of scales. Even when viewed from a fixed perspective...

READ MORE

Data processing techniques for airport surveillance radar weather sensing

Published in:
Proc. IEEE 1995 Int. Radar Conf., 8-11 May 1995, pp. 521-528.

Summary

Discusses data processing techniques that can provide high quality, automated weather information using the FAA's existing Airport Surveillance Radars (ASR-9). The cost of modifying the ASR-9 is significantly less than that for deployment of the dedicated terminal Doppler weather radar. These techniques have been implemented on a prototype ASR-9 weather surveillance processor (WSP) and have been tested operationally at the Orlando, FL and Albuquerque, NM air traffic control towers. The key to the success of this system has been the development of innovative data processing techniques that accommodate the non-optimum parameters of the ASR as a weather sensor. The authors motivate the development of the ASR-9 WSP system and describe in detail the data processing techniques that have been employed to achieve an operationally useful capability. They provide an overview of the WSP and the ongoing system development and test program. They provide specifics on the data processing algorithms that have been key to successful implementation of this capability.
READ LESS

Summary

Discusses data processing techniques that can provide high quality, automated weather information using the FAA's existing Airport Surveillance Radars (ASR-9). The cost of modifying the ASR-9 is significantly less than that for deployment of the dedicated terminal Doppler weather radar. These techniques have been implemented on a prototype ASR-9 weather...

READ MORE

An advanced weather surveillance processor for airport surveillance radars

Author:
Published in:
Proc. Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 396-401.

Summary

This paper describes an enhanced weather processor for the Federal Aviation Administration's Airport Surveillance Radar (ASR-9) that will include Doppler wind estimation for the detection of low altitude wind shear, scan-to-scan tracking to provide estimates of the speed and direction of storm movement and suppression of spurious weather reports currently generated by the ASR-9's six-level weather channel during episodes of anamalous radar energy propagation (AP). This ASR-9 Wind Shear Processor (WSP) will be implemented as a retrofit to the ASR-9 through the addition of interfaces, receiving chain hardware and high-speed digital processing and display equipment. Thunderstorm activity in terminal airspace (the volume extending approximately 30 nmi from an airport and to 15,000 feet altitude) is an obvious safety issue and makes a significant overall contribution to delay in the United States commercial aviation industry. Associated low-altitude wind shear has been identified as the primary cause of a number of air carrier accidents, involving almost 600 fatalities. Correlations of aircraft arrival and takeoff delay with associated weather conditions suggest that thunderstorm activity may account for 40 to 50 percent of serious delay within the United States. The WSP modification to the ASR-9 will provide the functional capabilities of the Terminal Doppler Weather Radar (TDWR) at airports whose operation levels and/or thunderstorm exposures do not justify the costs of the dedicated radar. Field testing of a prototype version of the ASR-9 WSP has confirmed that the weather information products it generates are accurate and are operationally useful in an Air Traffic Control (ATC) environment.
READ LESS

Summary

This paper describes an enhanced weather processor for the Federal Aviation Administration's Airport Surveillance Radar (ASR-9) that will include Doppler wind estimation for the detection of low altitude wind shear, scan-to-scan tracking to provide estimates of the speed and direction of storm movement and suppression of spurious weather reports currently...

READ MORE

An algorithm to remove anomalous propagation clutter returns from ASR-9 weather channel data using pencil beam radar data

Published in:
Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 366-371.

Summary

The Integrated Terminal Weather System (ITWS), currently under development by the Federal Aviation Administration (FAA), will produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as well as from aircraft in flight in the terminal area. The ITWS will provide products to Air Traffic personnel that are immediately usable without further meteorological interpretation. These products include current terminal-area weather and short-term (0-30 minute) predictions of significant weather phenomena. The ASR (Airport Surveillance Radar)-9 radar is used in the terminal area to control aircraft. This radar has a weather channel that provides the location and intensity of precipitation (6-level) on the air traffic controllers' radar screen. Controllers use the weather information to aid aircraft in avoiding weather. The ASR-9 radar data are often contaminated by anomalous propagation (AP). Due to the smoothing process used in the ASR-9, controllers are unable to distinguish between AP and valid weather returns. As a result controllers may attempt to vector aircraft around AP, resulting in increased controller workload and decreased terminal airspace capacity. The ITWS product suite includes two precipitation products: ITWS Precipitation (AP removed) and the ASR-9 Precipitation (AP flagged in black). The basis for these products is the ASR-9 weather channel output. Both of these products are created by an algorithm called AP-edit. The ITWS precipitation product is a representation of the location and intensity of precipitation in the TRACON (Terminal Radar Approach Control) area and may be used for situational awareness and as a planning aid for air traffic managers by showing where weather is located relative to traffic flow patterns. The ASR-9 precipitation product explicitly shows where AP clutter is located relative to any ASR-9 radar. Since the ITWS precipitation product docs not replace the ASR-9 weather display on any controllers' displays, the Air Traffic Control (ATC) supervisor or traffic manager may use the ASR-9 precipitation product to indicate the location of AP clutter to any individual controller. The products were demonstrated during the ITWS Demonstration and Validation Operational Test and Evaluation (OT&E) conducted at Memphis and Orlando International Airports during the summer of 1994. This paper describes the AP-edit algorithm and provides a preliminary evaluation of the performance of the algorithm.
READ LESS

Summary

The Integrated Terminal Weather System (ITWS), currently under development by the Federal Aviation Administration (FAA), will produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as...

READ MORE

Applications of column models for terminal weather nowcasts

Published in:
Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 66-71.

Summary

The Planetary Boundary Layer (PBL) is that part of the atmosphere, which is directly influenced by the presence of the earth's surface, and which responds to surface forcing with a time-scale of an hour or less. The Residual Layer (RL) is the portion of the lower atmosphere, which was part of the PBL within the past several hours, and which has become separated from the influence of short-term surface forcing, usually by the formation of a cooler layer at the surface. In the mid-latitudes, the height of the combined PBL and RL is usually 1-2 kilometers. A column model is a one-dimensional prognostic model for the state of a single column of the atmosphere, with special attention to the processes in the lowest few kilometers. It is designed to diagnose and nowcast the vertical structure of the PBL. Important information for ITWS1 nowcast products are the vertical profiles of horizontal wind velocity, temperature, humidity, and turbulent kinetic energy (TKE) in the lowest few kilometers (Sankey, 1994). Traditionally, operational meteorologists have obtained estimates of these quantities by balloon soundings, a measurement process that is not well-suited for continuous updates. We are investigating the possibility of developing an operational column model to obtain this vertical structure information for use in the ITWS. Our approach involves using a combination of sensing technology and analysis techniques that have proven successful in several research programs. Column models are designed to mimic the processes by which the surface forces the processes in the low atmosphere at times when local radiation is a dominant factor. Fluxes are measures of the net rates of these transport processes. The widely used Oregon State University column model (OSUlDPBL) parameterizes the fluxes by gradient transfer techniques (Troen and Mahr!, 1986). This model has provided dependable service in several field experiments, providing information with a vertical resolution of tens of meters. It is not designed to provide a fine-scale description of the stable nocturnal PBL. The French model COB EL has been developed to forecast the occurrence of radiation fog, and therefore concentrates on modeling the stable nocturnal PBL (Bergot and Guedalia, 1994). It uses a prognostic equation to estimate TKE in the stable boundary layer and parameterizes the fluxes in tern1s of the TKE (Duynkerke, 1991). A discussion of the potential uses of the column model in the ITWS is followed by the considerations that motivate the design of an operational column model. The prototype design is described. We conclude with the results of a preliminary evaluation using STORMFEST data (STORM Project Office, 1992) and a discussion of plans for a more comprehensive evaluation.
READ LESS

Summary

The Planetary Boundary Layer (PBL) is that part of the atmosphere, which is directly influenced by the presence of the earth's surface, and which responds to surface forcing with a time-scale of an hour or less. The Residual Layer (RL) is the portion of the lower atmosphere, which was part...

READ MORE

ITWS gridded winds product

Author:
Published in:
Proc. Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 384-389.

Summary

The Terminal Winds analysis technique was developed to take advantage of the Doppler information available in the terminal area. This technique, Optimal Estimation (OE), uses a minimum error variance technique (least squares) and is closely related to both the state-of-the-art operational non-Doppler winds analysis technique, Optimal Interpolation (OI) (Gandin, 1963) (Daly, 1991), and standard multiple Doppler techniques (Armijo, 1969). This technique was evaluated on data collected in 1992-1993 in Orlando FL, and demonstrated in real time in the Orlando testbed during the summer of 1993 and in the Memphis testbed during the summer of 1994.
READ LESS

Summary

The Terminal Winds analysis technique was developed to take advantage of the Doppler information available in the terminal area. This technique, Optimal Estimation (OE), uses a minimum error variance technique (least squares) and is closely related to both the state-of-the-art operational non-Doppler winds analysis technique, Optimal Interpolation (OI) (Gandin, 1963)...

READ MORE

Machine intelligent gust front detection for the Integrated Terminal Weather System (ITWS)

Published in:
Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 378-383.

Summary

The Integrated Terminal Weather System (ITWS), currently in development by the FAA, will produce a fully-automated integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as well as from aircraft in flight in the terminal area. The ITWS will provide products to Air Traffic personnel that are immediately usable without further meteorological interpretation. These products include current terminal area weather and short-term (0-30 minute) predictions of significant weather phenomena. The Terminal Doppler Weather Radar (TDWR) will serve as a principle sensor providing data to a number of the ITWS algorithms. One component of the ITWS will be an algorithm for detecting gust fronts and wind shifts. A gust front is the leading edge of a cold air outflow from a thunderstorm. The outflow, which is deflected at the ground, may propagate many miles ahead of the generating thunderstorm, and may persist as an outflow boundary long after the original storm has dissipated. Gust fronts can have a significant impact on air terminal operations since they often produce pronounced changes in wind speed and direction, forcing a change in active runway configuration and rerouting of aircraft within in the terminal airspace. In addition, wind shear, turbulence, and cross-winds along the frontal boundary pose significant safety hazards to departing and landing aircraft. Reliable detection and forecasting of gust fronts and wind shifts will both improve air safety and reduce costly delays. Lincoln Laboratory has developed an Initial Operational Capability (IOC) Machine Intelligent Gust Front Algorithm (MIGFA) for the ITWS which currently utilizes TDWR and LL WAS or ASOS anemometer data and makes use of new techniques of knowledge-based signal processing originally developed in the context of automatic target recognition [Verly, 1989]. Extensions to the IOC to incorporate additional sensor or product data available under the ITWS (e.g., NEXRAD, terminal winds) are currently under development. MIGFA was first developed for the Airport Surveillance Radar with Wind Shear Processor (ASR-9 WSP). Its design and performance have been documented in previous reports by the authors [Delanoy 1993a]. This paper focuses on the design of the more recently developed TDWR MIGFA and its extension and adaptation to the ITWS (a more detailed description of the TDWR MIGFA can be found in Troxel [1994]). An overview of the signal processing techniques used for detection and tracking is presented, as well as a brief discussion of the wind analysis methods used to arrive at the wind shift and wind shear estimates. Quantitative performance analyses using data collected during recent field testing in Orlando, FL and Memphis, TN are presented. Test results show that MIGFA substantially outperforms the gust front detection algorithm used in current TDWR systems [Hermes, 1993] (MIGFA is currently under consideration as an upgrade option for TDWR).
READ LESS

Summary

The Integrated Terminal Weather System (ITWS), currently in development by the FAA, will produce a fully-automated integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service sensors as well as from aircraft...

READ MORE

The Terminal Weather Information for Pilots (TWIP) program

Published in:
Proc. Sixth Conf. on Aviation Weather Systems, 15-20 January 1995, pp. 107-112.

Summary

The Federal Aviation Administration (F.A.A.) is currently embarking on programs, such as the Integrated Terminal Weather System (ITWS) and Terminal Doppler Weather Radar (TDWR), that will significantly improve the aviation weather information in the terminal area. Given the great increase in the quantity and quality of terminal weather information, it would be highly desirable to provide this information directly to pilots rather than having to rely on voice communications. Providing terminal weather information automatically via data link would both enhance pilot awareness of weather hazards and reduce air traffic controller workload. This paper will describe current work in the area of providing direct pilot access to terminal weather information via existing data link capabilities, such as ACARS (Addressing, Communications and Reporting System). During the summer of 1994, the ITWS testbed systems at Orlando, FL and Memphis, TN provided real–time terminal weather information to pilots in the form of text and character graphics–based products via the ACARS VHF data link. This effort follows an earlier successful demonstration during the summer of 1993 at Orlando (Campbell, 1994). Two types of Terminal Weather lnformation for Pilots (TWIP) messages are generated: a text-only message and a character graphics map. In order to ensure their operational utility, these products were developed in consultation with an ad hoc pilot user group. The TWIP Text Message is intended for typical ACARS cockpit displays, which are roughly 20 characters wide by 10 lines high. The TWIP Character Graphics Depiction is intended for the cockpit printers available on some aircraft that are at least 40 characters wide. Both products are intended to provide strategic information to pilots about terminal weather conditions to aid flight planning and improve situational awareness of potential hazards.
READ LESS

Summary

The Federal Aviation Administration (F.A.A.) is currently embarking on programs, such as the Integrated Terminal Weather System (ITWS) and Terminal Doppler Weather Radar (TDWR), that will significantly improve the aviation weather information in the terminal area. Given the great increase in the quantity and quality of terminal weather information, it...

READ MORE

Supporting the deployment of the Terminal Doppler Weather Radar (TDWR)

Published in:
Lincoln Laboratory Journal, Vol. 7, No. 2, Fall 1994, pp. 379-398.

Summary

The Terminal Doppler Weather Radar (TDWR) program was initiated in the mid-1 980s to develop a reliable automated Doppler-radar-based system for detecting weather hazards in the airport terminal area and for providing warnings that will help pilots avoid these hazards when landing and departing. This article describes refinements made to the TDWR system since 1988, based on subsequent Lincoln Laboratory testing in Kansas City, Missouri, and Orlando, Florida. During that time, Lincoln Laboratory developed new capabilities for the system such as the integration of warnings from TDWR and the Low Level Wind Shear Alert System (LLWAS). Extensive testing with the Lincoln Laboratory TDWR testbed system has reconfirmed the safety benefits of TDWR.
READ LESS

Summary

The Terminal Doppler Weather Radar (TDWR) program was initiated in the mid-1 980s to develop a reliable automated Doppler-radar-based system for detecting weather hazards in the airport terminal area and for providing warnings that will help pilots avoid these hazards when landing and departing. This article describes refinements made to...

READ MORE