Publications
Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator
Summary
Summary
We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel...
Readout circuitry for continuous high-rate photon detection with arrays of InP Geiger-mode avalanche photodiodes
Summary
Summary
An asynchronous readout integrated circuit (ROIC) has been developed for hybridization to a 32x32 array of single-photon sensitive avalanche photodiodes (APDs). The asynchronous ROIC is capable of simultaneous detection and readout of photon times of arrival, with no array blind time. Each pixel in the array is independently operated by...
External cavity beam combining of 21 semiconductor lasers using SPGD
Summary
Summary
Active coherent beam combining of laser oscillators is an attractive way to achieve high output power in a diffraction limited beam. Here we describe an active beam combining system used to coherently combine 21 semiconductor laser elements with an 81% beam combining efficiency in an external cavity configuration compared with...
Design and analysis of a hyperspectral microwave receiver subsystem
Summary
Summary
Recent technology advances have profoundly changed the landscape of modern radiometry by enabling miniaturized, low-power, and low-noise radio-frequency receivers operating at frequencies near 200 GHz and beyond. These advances enable the practical use of receiver arrays to multiplex multiple broad frequency bands into many spectral channels. We use the term...
Photonic ADC: overcoming the bottleneck of electronic jitter
Summary
Summary
Accurate conversion of wideband multi-GHz analog signals into the digital domain has long been a target of analog-to-digital converter (ADC) developers, driven by applications in radar systems, software radio, medical imaging, and communication systems. Aperture jitter has been a major bottleneck on the way towards higher speeds and better accuracy...
Diffractive beam combining of a 2.5-kW fiber laser array
Summary
Summary
Five 500-W fiber amplifiers were coherently combined with 79% efficiency using a diffractive optical element (DOE) combiner, generating a single beam whose M^2 = 1.1 beam quality exceeded that of the inputs.
Retroreflectors for remote readout of colorimetric sensors
Summary
Summary
We have developed a remote detection system consisting of commercially available retroreflective material coated with an analyte-specific colorimetric dye. Quantitative performance modeling predicts that, given the appropriate indicator dye, a system with a 10 cm optic and eye-safe illumination should be capable of detecting small droplets of contamination at kilometer...
Radiation effects in 3D integrated SOI SRAM circuits
Summary
Summary
Radiation effects are presented for the first time for vertically integrated 3 x 64 -kb SOI SRAM circuits fabricated using the 3D process developed at MIT Lincoln Laboratory. Three fully-fabricated 2D circuit wafers are stacked using standard CMOS fabrication techniques including thin-film planarization, layer alignment and oxide bonding. Micron-scale dense...
SET characterization in logic circuits fabricated in a 3DIC technology
Summary
Summary
Single event transients are characterized for the first time in logic gate circuits fabricated in a novel 3DIC technology where SET test circuits are vertically integrated on three tiers in a 20-um-thick layer. This 3D technology is extremely will suited for high-density circuit integration because of the small dimension the...
High-power, low-noise 1.5-um slab-coupled optical waveguide (SCOW) emitters: physics, devices, and applications
Summary
Summary
We review the development of a new class of high-power, edge-emitting, semiconductor optical gain medium based on the slab-coupled optical waveguide (SCOW) concept. We restrict the scope to InP-based devices incorporating either InGaAsP or InGaAlAs quantum-well active regions and operating in the 1.5-μm-wavelength region. Key properties of the SCOW gain...