Publications

Refine Results

(Filters Applied) Clear All

CompositeMatch: detecting n-ary matches in ontology alignment

Published in:
OM 2009: Proc. 4th Int. Workshop on Ontology Matching, 25 October 2009, pp. 250-251.

Summary

The field of ontology alignment still contains numerous unresolved problems, one of which is the accurate identification of composite matches. In this work, we present a context-sensitive ontology alignment algorithm, CompositeMatch, that identifies these matches, along with the typical one-to-one matches, by looking more broadly at the information that a concept's relationships confer. We show that our algorithm can identify composite matches with greater confidence than current tools.
READ LESS

Summary

The field of ontology alignment still contains numerous unresolved problems, one of which is the accurate identification of composite matches. In this work, we present a context-sensitive ontology alignment algorithm, CompositeMatch, that identifies these matches, along with the typical one-to-one matches, by looking more broadly at the information that a...

READ MORE

TCAS multiple threat encounter analysis

Published in:
MIT Lincoln Laboratory Report ATC-359

Summary

The recent development of high-fidelity U.S. airspace encounter models at Lincoln Laboratory has motivated a simulation study of the Traffic Alert and Collision Avoidance System (TCAS) multiple threat logic. We observed from archived radar data that while rarer than single-threat encounters, multiple threat encounters occur more frequently than originally expected. The multithreat logic has not been analyzed in the past using encounter models. To generate multi-threat encounters, this report extends the statistical techniques used to develop pairwise correlated encounters. We generated and simulated a large number of multi-threat encounters using the TCAS logic implemented in Lincoln Laboratory's Collision Avoidance System Safety Assessment Tool. Near mid-air collision (NMAC) count indicates how often close encounters are resolved, unresolved, or induced by TCAS. Change in vertical miss distance shows the effect of the additional threat on the vertical separation between the first two aircraft. Risk ratio measures how the probability of an NMAC changes when an aircraft is equipped with TCAS versus being unequipped. Study results indicate that in multi-threat encounters, the TCAS logic results in a more than twofold increase in unresolved NMACs and approximately five times more induced NMACs than one-on-one encounters. TCAS provides a safety benefit in multi-threat encounters by issuing resolution advisories that result in increased vertical separation between the equipped aircraft and the first intruder.
READ LESS

Summary

The recent development of high-fidelity U.S. airspace encounter models at Lincoln Laboratory has motivated a simulation study of the Traffic Alert and Collision Avoidance System (TCAS) multiple threat logic. We observed from archived radar data that while rarer than single-threat encounters, multiple threat encounters occur more frequently than originally expected...

READ MORE

Moving clutter spectral filter for Terminal Doppler Weather Radar

Author:
Published in:
34th Conf. on Radar Meteorology, 5-9 October 2009.

Summary

Detecting low-altitude wind shear in support of aviation safety and efficiency is the primary mission of the Terminal Doppler Weather Radar (TDWR). The wind-shear detection performance depends directly on the quality of the data produced by the TDWR. At times the data quality suffers from the presence of clutter. Al-though stationary ground clutter signals can be removed by a high-pass filter, moving clutter such as birds and roadway traffic cannot be attenuated using the same technique because their signal power can exist any-where in the Doppler velocity spectrum. Furthermore, because the TDWR is a single-polarization radar, polarimetry cannot be used to discriminate these types of clutter from atmospheric signals. The moving clutter problem is exacerbated at Western sites with dry microbursts, because their low signal-to-noise ratios (SNRs) are more easily masked by un-wanted moving clutter. For Las Vegas (LAS), Nevada, the offending clutter is traffic on roads that are oriented along the radar line of sight near the airport. The radar is located at a significantly higher altitude than the town, improving the visibility to the roads, and giving LAS the worst road clutter problem of all TDWR sites. The Salt Lake City (SLC), Utah, airport is located near the Great Salt Lake, which is the biggest inland staging area for migrating seabirds in the country. It, therefore, suffers from bird clutter, which not only can obscure wind shear signatures but can also mimic them to trigger false alarms. The TDWR "dry" site issues are discussed in more detail by Cho (2008). In order to mitigate these problems, we developed a moving clutter spectral filter (MCSF). In this paper we describe the algorithm and present preliminary test results.
READ LESS

Summary

Detecting low-altitude wind shear in support of aviation safety and efficiency is the primary mission of the Terminal Doppler Weather Radar (TDWR). The wind-shear detection performance depends directly on the quality of the data produced by the TDWR. At times the data quality suffers from the presence of clutter. Al-though...

READ MORE

Development of dual polarization aviation weather products for the FAA

Published in:
34th Conf. on Radar Meteorology, 5-9 October 2009.

Summary

Weather radar products from the United States' NEXRAD network are used as key components in FAA weather systems such as CIWS, ITWS, and WARP. The key products, High Resolution VIL (HRVIL) and High Resolution Enhanced Echo Tops (HREET), provide primary information about precipitation location and intensity. The NEXRAD network will become dual polarization capable beginning in late 2010 adding the ability to classify hydrometeors. This new aspect from radar remote sensing of the weather offers opportunity to provide new aviation weather products and augment existing ones. This paper will detail the dual polarization product development program at MIT Lincoln Laboratory (LL) in support of FAA system needs. Current development efforts focus on four products. Two new products will provide volumetric analysis seeking aviation hazards (icing and hail). Two existing products, HRVIL and HREET, will be invigorated by dual polarization data to yield improved data quality and mitigation of partial beam blockage. The LL program has partnered with NCAR and NSSL subject matter experts to bring their most advanced research results into these new and improved products. The LL program also has partnered with Valparaiso University for them to provide dual polarization and local sonde sounding data especially during suspected icing conditions. The new Icing Hazards Level (IHL) product is expected to provide the most benefit to the FAA. Its development also poses the greatest challenge both in scope and in the ability of S-band radar to sense the phenomena of interest. Icing phenomena include supercooled drops/droplets and ice crystals and the associated aviation hazard could be aloft or near/at the surface. Graupel is an indication that supercooled water has accreted to ice particles. The initial NEXRAD hydrometeor classifier will not have an explicit supercooled water class or the benefit of supporting data. It will have ice crystal and graupel classes. The LL approach will utilize at least some additional data (vertical thermodynamic profiles). Techniques applied to the development of IHL will likely have applicability to the other products as well. Aspects of the IHL development will also be discussed in the paper.
READ LESS

Summary

Weather radar products from the United States' NEXRAD network are used as key components in FAA weather systems such as CIWS, ITWS, and WARP. The key products, High Resolution VIL (HRVIL) and High Resolution Enhanced Echo Tops (HREET), provide primary information about precipitation location and intensity. The NEXRAD network will...

READ MORE

Unmanned aircraft collision avoidance using partially observable Markov decision processes

Published in:
MIT Lincoln Laboratory Report ATC-356

Summary

Before unmanned aircraft can fly safely in civil airspace, robust airborne collision avoidance systems must be developed. Instead of hand-crafting a collision avoidance algorithm for every combination of sensor and aircraft configuration, this project investigates the automatic generation of collision avoidance logic given models of aircraft dynamics, sensor performance, and intruder behavior. By formulating the problem of collision avoidance as a partially-observable Markov decision process (POMDP), a generic POMDP solver can be used to generate avoidance strategies that optimize a cost function that balances flight-plan deviation with collision. Experimental results demonstrate the suitability of such an approach using three different sensor modalities and two aircraft performance models.
READ LESS

Summary

Before unmanned aircraft can fly safely in civil airspace, robust airborne collision avoidance systems must be developed. Instead of hand-crafting a collision avoidance algorithm for every combination of sensor and aircraft configuration, this project investigates the automatic generation of collision avoidance logic given models of aircraft dynamics, sensor performance, and...

READ MORE

Redeployment of the New York TDWR - technical analysis of candidate sites and alternative wind shear sensors

Summary

The John F. Kennedy International Airport (JFK) and LaGuardia Airport (LGA) are protected from wind shear exposure by the New York Terminal Doppler Weather Radar (TDWR), which is currently located at Floyd Bennet Field, New York. Because of a September 1999 agreement between the Department of the Interior and the Department of Transportation, this location is required to be vacated no later than January 2023. Therefore, a study based on model simulations of wind shear detection probability was conducted to support future siting selection and alternative technologies. A total of 18 candidate sites were selected for analysis, including leaving the radar where it is. (The FAA will explore the feasibility of the latter alternative; it is included in this study only for technical analysis.) The 18 sites are: Six candidate sites that were identified in the initial New York TDWR site-survey studies in the 1990s (one of which is the current TDWR site), a site on Staten Island, two Manhattan skyscrapers, the current location of the WCBS Doppler weather radar in Twombly Landing, New Jersey, and eight local airports including JFK and LGA themselves. Results clearly show that for a single TDWR system, all six previously surveyed sites are suitable for future housing of the TDWR. Unfortunately, land acquisition of these sites will be at least as challenging as it was in the 1990s due to further urban development and likely negative reaction from neighboring residents. Evaluation results of the on-airport siting of the TDWR (either at JFK or at LGA) indicate that this option is feasible if data from the Newark TDWR are simultaneously used. This on-airport option would require software modification such as integration of data from the two radar systems an dimplementation of "overhead" feature detection. The radars on the Manhattan skyscrapers are not an acceptable alternative due to severe ground clutter. The Staten Island site and most other candidate airports are also not acceptable due to distance and/or beam blockage. The existing Airport Surveillance Radar (ASR-9) Weather Systems Processor (WSP) at JFK and the Bookhaven (OKX) Weather Surveillance Radar 1988-Doppler (WSR-88D, commonly known as NEXRAD) on Long Island cannot provide sufficient wind shear protection mainly due to limited wind shear detection capability and/or distance.
READ LESS

Summary

The John F. Kennedy International Airport (JFK) and LaGuardia Airport (LGA) are protected from wind shear exposure by the New York Terminal Doppler Weather Radar (TDWR), which is currently located at Floyd Bennet Field, New York. Because of a September 1999 agreement between the Department of the Interior and the...

READ MORE

Roadmap for weather integration into Traffic Flow Management Modernization (TFM-M)

Published in:
MIT Lincoln Laboratory Report ATC-347

Summary

This report provides recommendations for aligning new Collaborative Air Traffic Management Technologies (CATM-T) with evolving aviation weather products to improve NAS efficiency during adverse (especially severe) weather conditions. Key gaps identified include 1. Improving or developing pilot convective storm avoidance models as well as models for route blockage and capacity in severe weather is necessary for automated congestion prediction and resolution. 2. Forecasts need to characterize uncertainty that can be used by CATM tools and, explicitly forecast key parameters needed for translation of weather products to capacity impacts. 3. Time based flow management will require substantial progress in both the translation modeling and in predicting appropriate storm avoidance trajectories. Near term efforts should focus on integration of the Traffic Management Advisor (TMA) with contemporary severe weather products such as the Corridor Integrated Weather System (CIWS). 4. Human factors studies on product design to improve individual decision making, improved collaborative decision making in "difficult" situations, and the use of probabilistic products are also essential. 5. Studies need to be carried out to determine how well en route and terminal capacity currently is being utilized during adverse weather events so as to identify the highest priority areas for integrated weather-CATM system development.
READ LESS

Summary

This report provides recommendations for aligning new Collaborative Air Traffic Management Technologies (CATM-T) with evolving aviation weather products to improve NAS efficiency during adverse (especially severe) weather conditions. Key gaps identified include 1. Improving or developing pilot convective storm avoidance models as well as models for route blockage and capacity...

READ MORE

The Route Availability Planning Tool (RAPT): evaluation of departure management decision support in New York during the 2008 convective weather season

Published in:
8th USA/Europe Air Traffic Management Research and Development Sem., ATM 2009, 29 June - 2 July 2009.

Summary

Severe weather avoidance programs (SWAP) due to convective weather are common in many of the busiest terminal areas in the US National Airspace System (NAS). In order to make efficient use of available airspace in rapidly evolving convective weather, it is necessary to predict the impacts of the weather on key resources (e.g., departure and arrival routes and fixes), with frequent updates as the weather changes. Currently, this prediction is a mental process that imposes a significant cognitive burden on air traffic managers. As a result, air traffic management in SWAP is often inconsistent and decisions result in less than optimal performance. The Route Availability Planning Tool (RAPT) is a prototype automated decision support tool, intended to help air traffic managers in convective weather SWAP, by predicting the impacts of convective weather on departure routes. Originally deployed in New York in August, 2002, RAPT has recently undergone two field evaluations (2007 and 2008) in order to test and refine its concept of operations, evaluate the accuracy and usefulness of its decision guidance, and estimate observed and potential delay reduction benefits that may be achieved as a result of its use. This paper presents the results of the 2008 performance evaluation, focusing on the concept of operations and the quality of decision support guidance. A second paper [1] presents analyses of delay reduction benefits and the operational decision making environment in which RAPT is deployed.
READ LESS

Summary

Severe weather avoidance programs (SWAP) due to convective weather are common in many of the busiest terminal areas in the US National Airspace System (NAS). In order to make efficient use of available airspace in rapidly evolving convective weather, it is necessary to predict the impacts of the weather on...

READ MORE

Wind-shear system cost benefit analysis update

Published in:
MIT Lincoln Laboratory Report ATC-341

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind shear detection equipment are all key protection components. While these systems have been highly effective, there are substantial costs associated with maintaining and operating ground-based systems. In addition, while over 85% of all major air carrier operations occur at airports protected by one of these ground-based wind-shear systems, the vast majority of smaller operations remain largely unprotected. This report assesses the technical and operational benefits of current and potential alternative ground-based systems as mitigations for the low-altitude wind-shear hazard. System performance and benefits for all of the current TDWR (46), ASR-9 WSP (35), and LLWAS (40) protected airports are examined, along with 40 currently unprotected airports. We considered in detail several alternatives and/or combinations for existing ground-based systems. These included the option to use data from current WSR-88D (or NEXRAD) and two potential future sensor deployments: (1) a commercially built pulsed-Doppler Lidar and (2) an X-band commercial Doppler weather radar. Wind-shear exposure estimates and simulation models for each wind shear protection component were developed for each site in order to accurately comare all alternatives. For the period 2010-2032, the current combination of wind-shear protection systems reduces teh $3.0 billion unprotected NAS overall wind-shear safety exposure to just $160 million over the entire study period. Overall, tehre were few alternatives that resulted in higher benefits than the TDWR, TDWR-LLWAS, and WSP configurations that currently exist at 81 airports. However, the cheaper operating costs of NEXRAD make it a potential alternative especially at LLWAS and non-wind-shear protected sites.
READ LESS

Summary

A series of fatal commercial aviation accidents in the 1970s led to the development of systems and strategies to protect against wind shear. The Terminal Doppler Weather Radar (TDWR), Low Level Wind Shear Alert System (LLWAS), Weather Systems Processor (WSP) for Airport Surveillance Radars (ASR-9), pilot training and on-board wind...

READ MORE

Safety analysis of upgrading to TCAS Version 7.1 using the 2008 U.S. Correlated Encounter Model

Published in:
MIT Lincoln Laboratory Report ATC-349

Summary

As a result of monitoring and modeling efforts by Eurocontrol and the FAA, two change proposals have been created to change the TCAS II V9.0 logic. The first, CP-112E, addresses the safety issues referred to as SA01. SA01 events have to do with the reversal logic contained in the TCAS algorithm, e.g., when TCAS reverses the sense of an RA from climb to descend. Typically, reversals occur to resolve deteriorating conditions during and encounter. V7.0 contained reversal logic based on certain assumptions and engineering judgment, but operational experience obtained since deployment has compelled a re-evaluation in areas of that logic, specifically having to do with late reversals. The second change proposal, CP-115, rectifies observed confusion surrounding the aural annunication AVSA during an RA by replacing it with the annunciation LOLO, and changing the TCAS V7.0 display and logic to appropriately support the change. Collectively, the changes to teh TCAS logic in both CP-112E and CP115 are referred to as TCAS II V7.1. Included in this document is a safety study that consideres V7.1 as a whole, and also the first safety study that uses teh U.S. correlated encounter model developed by Lincoln Laboratory for testing TCAS. Also included is a discussion of simulation capabilites developed at Lincoln Laboratory for evaluating CP-115 and for future analysis of TCAS in high density areas. Our study indicates that mroe risk lies in remaining with the current version of TCAS over upgrading to V7.1, and that no negative impact on safety in high density airspace occurs as a result of CP-115.
READ LESS

Summary

As a result of monitoring and modeling efforts by Eurocontrol and the FAA, two change proposals have been created to change the TCAS II V9.0 logic. The first, CP-112E, addresses the safety issues referred to as SA01. SA01 events have to do with the reversal logic contained in the TCAS...

READ MORE