Publications

Refine Results

(Filters Applied) Clear All

An active filter achieving 43.6dBm OIP3

Published in:
IEEE Radio Frequency Integrated Circuits Symp., RFIC, 5-7 June 2011.

Summary

An active filter with a 50 omega buffer suitable as an anti-alias filter to drive a highly linear ADC is implemented in 0.13 um SiGe BiCMOS. This 6th-order Chebyshev filter has a 3 dB cutoff frequency of 28.3 MHz and achieves 36.5 dBm OIP3. Nonlinear digital equalization further improves OIP3 to 43.6 dBm. Measurements show 92 dB of rejection at the stopband and a gain of 49 dB. The measured in-band OIP3 of 43.6 dBm is 19 dB higher than previously published designs.
READ LESS

Summary

An active filter with a 50 omega buffer suitable as an anti-alias filter to drive a highly linear ADC is implemented in 0.13 um SiGe BiCMOS. This 6th-order Chebyshev filter has a 3 dB cutoff frequency of 28.3 MHz and achieves 36.5 dBm OIP3. Nonlinear digital equalization further improves OIP3...

READ MORE

Uni-traveling-carrier variable confinement waveguide photodiodes

Summary

Uni-traveling-carrier waveguide photodiodes (PDs) with a variable optical confinement mode size transformer are demonstrated. The optical mode is large at the input for minimal front-end saturation and the mode transforms as the light propagates so that the absorption profile is optimized for both high-power and high-speed performance. Two differently designed PDs are presented. PD A demonstrates a 3-dB bandwidth of 12.6 GHz, and saturation currents of 40 mA at 1 GHz and 34 mA at 10 GHz. PD B demonstrates a 3-dB bandwidth of 2.5 GHz, a saturation current greater than 100 mA at 1 GHz, a peak RF output power of + 19 dBm, and a third-order output intercept point of 29.1 dBm at a photocurrent of 60 mA.
READ LESS

Summary

Uni-traveling-carrier waveguide photodiodes (PDs) with a variable optical confinement mode size transformer are demonstrated. The optical mode is large at the input for minimal front-end saturation and the mode transforms as the light propagates so that the absorption profile is optimized for both high-power and high-speed performance. Two differently designed...

READ MORE

FDSOI process technology for subthreshold-operation ultra-low power electronics

Published in:
ECS Meeting, 1 May 2011 (in: Adv. Semiconductor-on-Insulator Technol. Rel. Phys., Vol. 35, No. 5, 2011, pp. 179-188).
Topic:

Summary

Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices possible while maintaining extremely low power consumption. Transistors optimized for subthreshold operation at 0.3 V may achieve a 97% reduction in switching energy compared to conventional transistors. The process technology described in this article takes advantage of the capacitance and performance benefits of thin-body silicon-on-insulator devices, combined with a workfunction engineered mid-gap metal gate.
READ LESS

Summary

Ultralow-power electronics will expand the technological capability of handheld and wireless devices by dramatically improving battery life and portability. In addition to innovative low-power design techniques, a complementary process technology is required to enable the highest performance devices possible while maintaining extremely low power consumption. Transistors optimized for subthreshold operation...

READ MORE

Thermally tuned dual 20-channel ring resonator filter bank in SOI (silicon-on-insulator)

Published in:
CLEO 2011, Conf. on Lasers and Electro-Optics, 1 May 2011.

Summary

Two 20-channel second-order optical filter banks have been fabricated. With tuning, the requirements for a wavelength multiplexed photonic AD-converter (insertion loss 1-3 dB, extinction >30 dB and optical bandwidth 22-27 GHz) are met.
READ LESS

Summary

Two 20-channel second-order optical filter banks have been fabricated. With tuning, the requirements for a wavelength multiplexed photonic AD-converter (insertion loss 1-3 dB, extinction >30 dB and optical bandwidth 22-27 GHz) are met.

READ MORE

MBE back-illuminated silicon Geiger-mode avalanche photodiodes for enhanced ultraviolet response

Published in:
SPIE Vol. 8033, Advanced Photon Counting Techniques V, 25 April 2011, 80330D.

Summary

We have demonstrated a wafer-scale back-illumination process for silicon Geiger-mode avalanche photodiode arrays using Molecular Beam Epitaxy (MBE) for backside passivation. Critical to this fabrication process is support of the thin (< 10 um) detector during the MBE growth by oxide-bonding to a full-thickness silicon wafer. This back-illumination process makes it possible to build low-dark-count-rate single-photon detectors with high quantum efficiency extending to deep ultraviolet wavelengths. This paper reviews our process for fabricating MBE back-illuminated silicon Geigermode avalanche photodiode arrays and presents characterization of initial test devices.
READ LESS

Summary

We have demonstrated a wafer-scale back-illumination process for silicon Geiger-mode avalanche photodiode arrays using Molecular Beam Epitaxy (MBE) for backside passivation. Critical to this fabrication process is support of the thin ( 10 um) detector during the MBE growth by oxide-bonding to a full-thickness silicon wafer. This back-illumination process makes...

READ MORE

Overlapped digital subarray architecture for multiple beam phased array radar

Author:
Published in:
EuCAP 2011, 5th European Conf. on Antrennas and Propagation, 11-15 April 2011, pp. 3027-3030.

Summary

MIT Lincoln Laboratory is conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit and Receive Integrated Circuits and panel-based Line Replaceable Unit (LRU) will be presented. A program plan for risk reduction and system demonstration will be outlined.
READ LESS

Summary

MIT Lincoln Laboratory is conducting a technology demonstration of affordable Multifunction Phased Array Radar (MPAR) technology for Next Generation air traffic control and national weather surveillance services. Aggressive cost and performance goals have been established for the system. The array architecture and its realization using custom Transmit and Receive Integrated...

READ MORE

Uniformity study of wafer-scale InP-to-silicon hybrid integration

Published in:
Appl. Phys. A, Mat. Sci. & Process., Vol. 103, No. 1, April 2011, pp. 213-218.

Summary

In this paper we study the uniformity of up to 150 mm in diameter wafer-scale III-V epitaxial transfer to the Si-on-insulator substrate through the O2 plasma-enhanced low-temperature (300°C) direct wafer bonding. Void-free bonding is demonstrated by the scanning acoustic microscopy with sub-um resolution. The photoluminescence (PL) map shows less than 1 nm change in average peak wavelength, and even improved peak intensity (4% better) and full width at half maximum (41% better) after 150 mm in diameter epitaxial transfer. Small and uniformly distributed residual strain in all sizes of bonding, which is measured by high-resolution X-ray diffraction Omega- 2Theta mapping, and employment of a two-period InP-InGaAsP superlattice at the bonding interface contributes to the improvement of PL response. Preservation of multiple quantum-well integrity is also verified by high-resolution transmission electron microscopy.
READ LESS

Summary

In this paper we study the uniformity of up to 150 mm in diameter wafer-scale III-V epitaxial transfer to the Si-on-insulator substrate through the O2 plasma-enhanced low-temperature (300°C) direct wafer bonding. Void-free bonding is demonstrated by the scanning acoustic microscopy with sub-um resolution. The photoluminescence (PL) map shows less than...

READ MORE

Measurement of the absolute Raman scattering cross sections of sulfur and the standoff Raman detection of a 6-mm-thick sulfur specimen at 1500m

Published in:
J. Raman Spectr., Vol. 42, No. 3, March 2011, pp. 461-464.

Summary

The absolute Raman scattering cross sections (σRS) for the 471, 217, and 153 cm−1 modes of sulfur were measured as 6.0 ± 1.2 × 10−27, 7.7 ± 1.6 × 10−27, and 1.2 ± 0.24 × 10−26 cm2 at 815, 799, and 794 nm, respectively, using a 785-nm pump laser. The corresponding values of σRS at 1120, 1089, and 1081 nm were determined to be 1.5 ± 0.3 × 10−27, 1.2 ± 0.24 × 10−27, and 1.2 ± 0.24 × 10−27 cm2 using a 1064-nm laser. A temperature-controlled, small-cavity (2.125 mm diameter) blackbody source was used to calibrate the signal output of the Raman spectrometers for these measurements. Standoff Raman detection of a 6-mm-thick sulfur specimen located at 1500 m from the pump laser and the Raman spectrometer was made using a 1.4-W, CW, 785-nm pump laser.
READ LESS

Summary

The absolute Raman scattering cross sections (σRS) for the 471, 217, and 153 cm−1 modes of sulfur were measured as 6.0 ± 1.2 × 10−27, 7.7 ± 1.6 × 10−27, and 1.2 ± 0.24 × 10−26 cm2 at 815, 799, and 794 nm, respectively, using a 785-nm pump laser. The...

READ MORE

Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation

Published in:
IEEE Trans. Electron Devices, Vol. 58, No. 2, February 2011, pp. 419-426.

Summary

The effective work function of a reactively sputtered TiN metal gate is shown to be tunable from 4.30 to 4.65 eV. The effective work function decreases with nitrogen flow during reactive sputter deposition. Nitrogen annealing increases the effective work function and reduces Dit. Thinner TiN improves the variation in effective work function and reduces gate dielectric charge. Doping of the polysilicon above the TiN metal gate with B or P has negligible effect on the effective work function. The work-function-tuned TiN is integrated into ultralow-power fully depleted silicon-on-insulator CMOS transistors optimized for subthreshold operation at 0.3 V. The following performance metrics are achieved: 64-80-mV/dec subthreshold swing, PMOS/NMOS on-current ratio near 1, 71% reduction inCgd, and 55% reduction in Vt variation when compared with conventional transistors, although significant short-channel effects are observed.
READ LESS

Summary

The effective work function of a reactively sputtered TiN metal gate is shown to be tunable from 4.30 to 4.65 eV. The effective work function decreases with nitrogen flow during reactive sputter deposition. Nitrogen annealing increases the effective work function and reduces Dit. Thinner TiN improves the variation in effective...

READ MORE

Microwave photonic applications of slab-coupled optical waveguide devices

Published in:
2010 23rd Annual Mtg. of the IEEE Photonics Society, 10 November 2010, pp. 479-480.
Topic:

Summary

The semiconductor slab-coupled optical waveguide (SCOW) concept is a versatile device platform that has enabled new classes of high-power, low-noise single-frequency lasers, mode-locked lasers, optical amplifiers, and photodiodes for analog optical links and photonic analog-to-digital converters.
READ LESS

Summary

The semiconductor slab-coupled optical waveguide (SCOW) concept is a versatile device platform that has enabled new classes of high-power, low-noise single-frequency lasers, mode-locked lasers, optical amplifiers, and photodiodes for analog optical links and photonic analog-to-digital converters.

READ MORE