Publications

Refine Results

(Filters Applied) Clear All

Performance characteristics of an algorithm used to remove anomolous propagation from the NEXRAD data

Published in:
28th Conf. on Radar Meteorology, 7-12 September 1997, pp. 317-319.

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed and tested an algorithm that removes AP from the NEXRAD reflectivity data. In this paper, we will first provide a brief description of the algorithm. Next we will present the truthing methodology used to identify AP. Then, we will show the algorithm performance results and failure mechanisms with this initial version. Finally, we consider refinements to improve the algorithm's performance.
READ LESS

Summary

An important limitation of precipitation sensors is contamination from ground clutter targets under conditions of anomalous propagation (AP). This problem can be mitigated significantly by high-pass clutter filters such as used by the Terminal Doppler Weather Radar (TDWR) and Next Generation Weather Radar (NEXRAD) systems....MIT Lincoln Laboratory (MIT/LL) has developed...

READ MORE

The capabilities and limitations of using the ASR-9 as a terminal area precipitation sensor

Published in:
28th Conf. on Radar Meteorology, 7-12 September 1997.

Summary

The Airport Surveillance Radar (ASR-9) weather channel is an invaluable tool to air-traffic and flight management specialists. The precipitation data from this sensor is currently displayed on air-traffic specialists' radar scopes and is incorporated into the Integrated Terminal Weather System (ITWS). The data are used to determine optimum routes for aircraft operating in and near the tenninal airspace. Data from other terminal area precipitation sensors such as the Terminal Doppler Weather Radar (TDWR) and the Next Generation Weather Radar (NEXRAD) are also used for this same purpose. The primary advantage of using the ASR-9 as a precipitation sensor is its high update rate, e.g. thirty seconds versus about five minutes for TDWR and N EX RAD. The ASR-9 is also quite reliable, with limited down time. Finally, range folding is not a significant problem with this radar. However, during ITWS prototype testing over the past three years, we have identified several limitations of using this radar as a precipitation sensor. For one, the maximum reflectivity of cells can be significantly underestimated by the ASR-9 due to partial filling of its fan-shaped elevation beam and cell-to-cell spatial averaging. Also, the occurrence of underestimation seems to increase when the radar operates in circular polarization mode. In addition, we have analyzed cases where significant precipitation-induced attenuation has occurred. Finally, because most ASR-9s are located on the airport, rain cores developing aloft, above the airport, maybe underestimated or missed entirely. This paper focuses on the problems identified through the ITWS prototype testing.
READ LESS

Summary

The Airport Surveillance Radar (ASR-9) weather channel is an invaluable tool to air-traffic and flight management specialists. The precipitation data from this sensor is currently displayed on air-traffic specialists' radar scopes and is incorporated into the Integrated Terminal Weather System (ITWS). The data are used to determine optimum routes for...

READ MORE

Initial comparison of lightning mapping with operational time-of-arrival and interferometric systems

Published in:
J. Geophys. Res., Vol. 102, No. D10, 27 May 1997, pp. 11,071-11,085.

Summary

The mapping of lightning radiation sources produced by the operational Time-of-Arrival National Aeronautics and Space Administration/Lightning Detection and Ranging (NASA/LDAR) system is compared with that of the Interferometric French Office National D'Etudes et de Recherches Aerospatiales (ONERA-3D) system. The comparison comprises lightning activity in three Florida storms and also individual flashes in one of these storms. Although limited in scope, the comparison analysis show a significant difference in the representation of lightning radiation by each mapping system. During the duration of a flash, the LDAR data show a continuity in time and a three-dimensional structure of radiation sources. The ONERA-3D radiation source data are more intermittent in time and have a more two-dimensional structure. The distinction between the radiation sources mapped by the two systems is also reflected in the difference between their propagation speeds, 10^4-10^5 m s^-1, estimated by the LDAR system, and 10^7-10^8 m s^-1, estimated by the ONERA-3D system. We infer that this difference occurs because most of the radiation sources mapped with LDAR are associated with virgin breakdown processes typical of slowly propagating negative leaders. On the other hand, most of the radiation sources mapped with ONERA3D are produced by fast intermittent negative breakdown processes typical of dart leaders and K changes as they traverse the previously ionized channels. Thus each operational system may emphasize different stages of the lightning flash, but neither appears to map the entire flash.
READ LESS

Summary

The mapping of lightning radiation sources produced by the operational Time-of-Arrival National Aeronautics and Space Administration/Lightning Detection and Ranging (NASA/LDAR) system is compared with that of the Interferometric French Office National D'Etudes et de Recherches Aerospatiales (ONERA-3D) system. The comparison comprises lightning activity in three Florida storms and also individual...

READ MORE

Convective weather forecasting for FAA applications

Published in:
7th Conf. on Aviation, Range, and Aerospace Meteorology, ARAM, 2-7 February 1997.

Summary

The Convective Weather Product Development Team (PDT) was formed in 1996 as part of the reorganization of the FAA Aviation Weather Research Program, to provide an effective way to conduct critical applied research in a collaborative and rational fashion. Detecting and predicting convective weather is extremely important to aviation, since approximately half of the national airspace delay in the warm season is caused by thunderstorms. Reliable 0--6 hr storm predictions are essential for aviation users to achieve safe and efficient use of the airspace, as well as for future air traffic control automation systems. Our goal on this PDT is to direct our research and development activities toward operationally useful convective weather detection and forecast products, and delivery of those products, so that users can receive benefits on an immediate and continual basis. Given that we have many more initiatives than funding, we have chosen to prioritize our activities according to near-term achievable benefits to users. Our hope is that the success of initial planned demonstrations will help the FAA identify a consistent level of long-term R&D funding, so that we can make real progress towards achieving our full set of goals. In this paper, we present our statement of the FAA Convective Weather Forecasting problem, evidence of the need for forecasts in the National Airspace System (NAS), and an illustration of the air traffic delay caused by convective weather. We then discuss our research plan and rationale, and outline our main initiatives for the upcoming year.
READ LESS

Summary

The Convective Weather Product Development Team (PDT) was formed in 1996 as part of the reorganization of the FAA Aviation Weather Research Program, to provide an effective way to conduct critical applied research in a collaborative and rational fashion. Detecting and predicting convective weather is extremely important to aviation, since...

READ MORE

The impact of thunderstorm growth and decay on air traffic management in class B airspace

Published in:
7th Conf. on Aviation, Range, and Aerospace Meteorology, ARAM, 2-7 February 1997.

Summary

Air traffic management is a challenging task, especially if the airspace involved is impacted by inclement weather. The high volume of air traffic which inundates the nation's major airports compounds the difficulties with which Air Traffic Control (ATC) specialists have to cope. When you add the unpredictability of thunderstorm growth and decay to the controllers workload, air traffic management becomes even more of a challenge. ATC specialists would benefit from reliable forecasts of thunderstorm growth and decay. To determine how they would use a Growth and Decay product, ATC specialists from the Memphis Air Route Traffic Control Center (ARTCC), Traffic Management Unit (TMU), and TRACON supervisors were interviewed while viewing five movie loops of Memphis weather cases. The movies consisted of the ASR-9 six-level reflectivity data, aircraft beacons, and storm motion vectors.
READ LESS

Summary

Air traffic management is a challenging task, especially if the airspace involved is impacted by inclement weather. The high volume of air traffic which inundates the nation's major airports compounds the difficulties with which Air Traffic Control (ATC) specialists have to cope. When you add the unpredictability of thunderstorm growth...

READ MORE

The Memphis ITWS convective forecasting collaborative demonstration

Summary

Accurate, short-term forecasts of where thunderstorms will develop, move and decay allow for strategic traffic management in and around the aviation terminal and enroute airspace. Pre-planning to avoid adverse weather conditions provides safe, smooth and continuous air traffic flow and savings in both fuel cost and time. Wolfson, et. al ( 1997) describe the problem of convective weather forecasting for FAA applications. In 1995, National Center for Atmospheric Research (NCAR), MIT Lincoln Laboratory (MIT-LL) and National Severe Storms Laboratory (NSSL) scientists and engineers agreed to collaborate on the development of a convective weather forecasting algorithm for use in airport terminal areas. Each laboratory brings special strengths to the project. NCAR has been developing techniques for precise, short-term (0-60 minutes) forecasts of thunderstorm initiation, movement and dissipation for the FAA over the past ten years and has developed the Auto-Nowcaster software. MIT-LL has been developing real-time algorithms for the Integrated Terminal Weather System (ITWS), including techniques for storm tracking, gust front detection, and calculating storm growth and decay (as part of predicting microbursts) . NSSL has been working on the NEXRAD Storm Cell Identification and Tracking (SCIT) algorithm, and on understanding the predictive value of the storm cell information. Thus by using the latest research results and best techniques available at each laboratory, the collaborative effort will hopefully result in a superior convective weather forecasting algorithm. Our goal in the immediate future is to develop a joint algorithm that can be demonstrated to users of terminal weather information, so that the benefits of convective weather forecast information can be realized, and the remaining needs can be assessed. As a first effort in the collaboration, the laboratories fielded their individual algorithms at the Memphis ITWS site. This paper gives an overview of our collaborative experiment in Memphis, the system each laboratory operated, some preliminary analysis of our performance on one case, and our plans for the near future.
READ LESS

Summary

Accurate, short-term forecasts of where thunderstorms will develop, move and decay allow for strategic traffic management in and around the aviation terminal and enroute airspace. Pre-planning to avoid adverse weather conditions provides safe, smooth and continuous air traffic flow and savings in both fuel cost and time. Wolfson, et. al...

READ MORE

Report on product performance for the Terminal Doppler Weather Radars (TDWRs) at Washington National Airport and Memphis and Orlando International Airports

Published in:
MIT Lincoln Laboratory Report ATC-246

Summary

Massachusetts Institute of Technology Lincoln Laboratory provides support to the Terminal Doppler Weather Radar (TDWR) Program Office in the performance analysis of deployed TDWR systems, and resulting recommendations for systems enhancements. This report documents initial performance of the TDWR products at Washington National Airport (DCA), Memphis International Airport (MEM) and Orlando International Airport (MCO). This performance depends, in turn, on the site optimization performed for the specific radars. Therefore, an overview of site optimization process, using DCA as a concrete example, is included. After the sites were optimized, base data (Doppler velocity and reflectivity) and product data (algorithm detections) were collected to assess the quality of the base data and the performance of the microburst and gust front detection algorithms. It is assumed that the reader of this report has an extensive knowledge of the TDWR system. (Not Complete)
READ LESS

Summary

Massachusetts Institute of Technology Lincoln Laboratory provides support to the Terminal Doppler Weather Radar (TDWR) Program Office in the performance analysis of deployed TDWR systems, and resulting recommendations for systems enhancements. This report documents initial performance of the TDWR products at Washington National Airport (DCA), Memphis International Airport (MEM) and...

READ MORE

Terminal area separation standards: historical development, current standards, and processes for change

Published in:
MIT Lincoln Laboratory Report ATC-258

Summary

This paper gives an overview and summary of the separation requirements for air traffic control in the U.S. National Airspace System with emphasis on those relevant to terminal landing operations. These requirements are documented in the Federal Aviation Administration's (FAA's) Air Traffic Control Order 7110.65J, as ammended, and various national and local Orders. These requirements are also addressed in the Aeronautical Information Manual, the International Civil Aviation Organization's Standards and Recommended Practices, and the Federal Aviation Regulations (FARs). The purpose of this paper is to assist those people involved with the introduction of new technologies and procedures in the terminal airspace by providing them with an understanding of the separation requirements, the need for those requirements, and the processes used to change the requirements.
READ LESS

Summary

This paper gives an overview and summary of the separation requirements for air traffic control in the U.S. National Airspace System with emphasis on those relevant to terminal landing operations. These requirements are documented in the Federal Aviation Administration's (FAA's) Air Traffic Control Order 7110.65J, as ammended, and various national...

READ MORE

A comprehensive system for measuring wake vortex behavior and related atmospheric conditions at Memphis, Tennessee

Published in:
Air Traffic Control Q., Vol. 5, No. 1, January 1997, pp. 49-68.

Summary

Models of vortex behavior as a function of atmospheric conditions are being developed in an attempt to improve safety and minimize unnecessary airport capacity restrictions due to wake vortices. Direct measurements of vortices and the relevant meteorological conditions in an operational setting, which would serve to improve the understanding of vortex behavior, are scarce and incomplete. A comprehensive vortex, meteorological, and aircraft measurement system has been constructed at Memphis International Airport and operated in two I-month periods during 1994 and 1995. A 10.6 um continuous-wave (CW) coherent lidar was used to measure vortex parameters with high fidelity. This lidar features a number of improvements over previous systems, including an automatic vortex detection and tracking algorithm to ensure efficient scanning. Meteorological data were collected from a 45 m instrumented tower, balloon soundings, a wind profiler/radio acoustic sounding system (RASS), sonic detection and ranging (SO DAR), and other sensors. This paper presents ensemble distributions of the conditions under which the over 500 aircraft were measured, and samples of vortex and atmospheric measurements. These data will be compared with theoretical predictions of vortex behavior as part of the development of an operational system designed to reduce aircraft spacings in the terminal area.
READ LESS

Summary

Models of vortex behavior as a function of atmospheric conditions are being developed in an attempt to improve safety and minimize unnecessary airport capacity restrictions due to wake vortices. Direct measurements of vortices and the relevant meteorological conditions in an operational setting, which would serve to improve the understanding of...

READ MORE

ITWS microburst prediction algorithm performance, capabilities, and limitations

Summary

Lincoln Laboratory, under funding from the Federal Aviation Administration (FAA) Terminal Doppler Weather Radar program, has developed algorithms for automatically detecting microbursts. While microburst detection algorithms provide highly reliable warnings of microbursts. there still remains a period of time between microburst onset and pilot reaction during which aircraft are at risk. This latency is due to the time needed for the automated algorithms to operate on the radar data, for air traffic controllers to relay any warnings and for pilots to react to the warnings. Lincoln Laboratory research and development has yielded an algorithm for accurately predicting when microburst outflows will occur. The Microburst Prediction Algorithm is part of a suite of weather detection algorithms within the Integrated Terminal Weather System. This paper details the performance of the Microburst Prediction Algorithm over a wide range of geographical and climatological environments. The paper also discusses the full range of the Microburst Prediction Algorithm's capabilities and limitations in varied weather environments. This paper does not discuss the overall rationale for a prediction algorithm or the detailed methodology used to generate predictions.
READ LESS

Summary

Lincoln Laboratory, under funding from the Federal Aviation Administration (FAA) Terminal Doppler Weather Radar program, has developed algorithms for automatically detecting microbursts. While microburst detection algorithms provide highly reliable warnings of microbursts. there still remains a period of time between microburst onset and pilot reaction during which aircraft are at...

READ MORE