Publications
Tagged As
Wind-shear system cost-benefit analysis
Summary
Summary
Mitigating thunderstorm wind-shear threats for aircraft near the ground has been an important issue since the 1970s, when several fatal commercial aviation accidents were attributed to wind shear. Updating the knowledge base for airport wind-shear exposure and effectiveness of detection systems has become critical to the Federal Aviation Administration as...
Noncontact detection of homemade explosive constituents via photodissociation followed by laser-induced fluorescence
Summary
Summary
Noncontact detection of the homemade explosive constituents urea nitrate, nitromethane and ammonium nitrate is achieved using photodissociation followed by laser-induced fluorescence (PD-LIF). Our technique utilizes a single ultraviolet laser pulse (~7 ns) to vaporize and photodissociate the condensed-phase materials, and then to detect the resulting vibrationally-excited NO fragments via laser-induced...
Evaluation of enroute Convective Weather Avoidance Models based on planned and observed flight
Summary
Summary
The effective management of convective weather in congested air space requires decision support tools that can translate weather information available to air traffic managers into anticipated impact on air traffic operations. The Convective Weather Avoidance Model (CWAM) has been under development at Lincoln Lab under sponsorship of NASA to develop...
Measurement of trace explosive residues in a surrogate operational environment: implications for tactical use of chemical sensing in C-IED operations
Summary
Summary
A campaign to measure the amount of trace explosive residues in an operational military environment was conducted on May 27?31, 2007, at the National Training Center at Fort Irwin, CA, USA. The objectives of this campaign were to develop the methods needed to collect and analyze samples from tactical military...
Moving clutter spectral filter for Terminal Doppler Weather Radar
Summary
Summary
Detecting low-altitude wind shear in support of aviation safety and efficiency is the primary mission of the Terminal Doppler Weather Radar (TDWR). The wind-shear detection performance depends directly on the quality of the data produced by the TDWR. At times the data quality suffers from the presence of clutter. Al-though...
Progress of Multifunction Phased Array Radar (MPAR) program
Summary
Summary
This paper will discuss the progress the Multi-function Phased Array Radar (MPAR) research program has made over the last 18 months as well as insight into the program strategy for moving forward. Current research activities include evaluating the impact of MPAR's faster scanning rates to aviation weather algorithms (e.g., how...
A novel method for remotely detecting trace explosives
Summary
Summary
The development of a technique with the ability to detect trace quantities of explosives at a distance is of critical importance. In numerous situations when explosive devices are prepared, transported, or otherwise handled, quantifiable amounts of the explosive material end up on surfaces. Rapid detection of these chemical residues in...
Detection of condensed-phase explosives via laser-induced vaporization, photodissociation, and resonant excitation
Summary
Summary
We investigate the remote detection of explosives via a technique that vaporizes and photodissociates the condensed-phase material and detects the resulting vibrationally excited NO fragments via laser-induced fluorescence. The technique utilizes a single 7 ns pulse of a tunable laser near 236:2nm to perform these multiple processes. The resulting blue-shifted...
Detecting asteroids with a multi-hypothesis velocity matched filter
Summary
Summary
We present a novel approach to image processing for optical detection of faint asteroids. Traditional methods of asteroid detection require observations in multiple frames taken over a period of time, but are limited by the signal-to-noise ratio in a single frame. Our approach is based on a velocity matched filter...
Experimental demonstration of remote optical detection of trace explosives.
Summary
Summary
MIT Lincoln Laboratory has developed a concept that could enable remote (10s of meters) detection of trace explosives' residues via a field-portable laser system. The technique relies upon laser-induced photodissociation of nitro-bearing explosives into vibrationally excited nitric oxide (NO) fragments. Subsequent optical probing of the first vibrationally excited state at...