Publications

Refine Results

(Filters Applied) Clear All

Assessment of the weather detection capability of an Airport Surveillance Radar with solid-state transmitter

Author:
Published in:
MIT Lincoln Laboratory Report ATC-209

Summary

The Federal Aviation Administration may acquire a new Airport Surveillance Radar-ASR-11-to replace aging ASR-7s and ASR-8s with a digital terminal radar consistent with Advanced Automation System requirements. A survey of the radar manufacturing industry suggests that a solid-state transmitter will likely be a component of this radar. The ASR-11 will feature a digital weather processing channel to measure and display six calibrated levels of precipitation reflectivity. An additional weather surveillance goal is the capability to support detection of low altitude wind shear phenomena. Use of a low peak power, solid-state transmitter and associated pulse compression technology raises several issues with respect to the capability of ASR-11 to meet these weather measurement objectives: 1. ASR-11 sensitivity will be degraded by approximately 16 to 20 dB relative to the Klystron-based ASR-9 at short range. This results because it is not feasible to use pulse compression waveforms to compensate for low peak transmitter power at short range; 2. Stability of a solid state ASR-11 transmitter may significantly exceed that of previous vacuum tube ASR transmitters. Increased clutter suppression capability associated with this enhanced stability could partially offset the reduced sensitivity of ASR-11 in meeting weather detection goals; 3. Pulse compression range sidelobes may resilt in "ghost" images of actual weather features, displaced in range by as much as 10 km. In some circumstances, these could result in false indications of operationally significant weather features such as thunderstorm-induced gust fronts. We examine these issues through straightforward analyses and simulation. Our assessment depends heavily on Doppler weather radar measurements of thunderstorms and associated wind shear phenomena obtained with Lincoln Laboratory's Terminal Doppler Weather Radar and ASR-9 testbeds. Overall, our assessment indicates that a solid-state transmitter ASR-11 can provide six-level weather reflectivity data with accuracy comparable to that of the ASR-9. Detection of low altitude wind shear phenomena using a solid-state transmitter ASR is more problematic. Reduced sensitivity at short range--the range interval of primary operational concern for an on-airport ASR--results in significant degradation of its capability to measure the reflectivity and Doppler velocity signatures associated with gust fronts and "dry" microbursts. This degradation is not offset by the enhanced clutter suppression capability provided by a solid-state transmitter. Although pulse compression range sidelobes do not appear to be a major issue if they are held to the -55 dB level, simulations are presented where range sidelobes result in a false gust front wind shear signature.
READ LESS

Summary

The Federal Aviation Administration may acquire a new Airport Surveillance Radar-ASR-11-to replace aging ASR-7s and ASR-8s with a digital terminal radar consistent with Advanced Automation System requirements. A survey of the radar manufacturing industry suggests that a solid-state transmitter will likely be a component of this radar. The ASR-11 will...

READ MORE

Analysis of surveillance performance at Chicago O'Hare Airport

Published in:
MIT Lincoln Laboratory Report ATC-193

Summary

This report describes the results of RF measurements of the 1030 and 1090 MHz environment in the Chicago terminal area conducted by Lincoln Laboratory in October 1991. The measurements were made at the request of the FAA in response to reports by controllers in Chicago that TCAS interrogations are affecting the surveillance performance of the Chicago Secondary Surveillance Radar (SSR). The Airborne Meauserements Facility (AMF), developed at Lincoln Laboratory, was used to gather TCAS and SSR interrogation and reply data in the vicinity of O'Hare Airport during periods of active TCAS operation. Simultaneously, local aircraft track data were collected using the Automated Radar Terminal System (ARTS) data recording facility. Analysis of both the AMF data and the ARTS data show that TCAS interrogations do not cause significant degradation in SSR surveillance performance and that the average Chicago ARTS track performance in the presence of TCAS-equipped aircraft is comparable to earlier measurements of track performance in Chicago as well as at a number of other high-density terminal areas. Specific regions within the CHicago surveillance area were observed to contain concentrations of poor ARTS track performance, and analysis of the data has shown the cause to be differential vertical lobing associated with the SSR antenna and faulty Mode S transponders on certain aircarrier aircraft. Both of these problems have subsequently been corrected.
READ LESS

Summary

This report describes the results of RF measurements of the 1030 and 1090 MHz environment in the Chicago terminal area conducted by Lincoln Laboratory in October 1991. The measurements were made at the request of the FAA in response to reports by controllers in Chicago that TCAS interrogations are affecting...

READ MORE

Aircraft surveillance based on GPS position broadcasts from mode S beacon transponders

Published in:
Proc. of ION GPS, v 1, 1994, pp. 939-950.

Summary

Flight testing of a new air surveillance concept, GPS-Squitter, is reported. It integrates GPS receivers with the existing secondary surveillance radar beacon equipment carried by most aircraft. Simple, inexpensive, non-scanning ground stations listen for GPS position reports broadcast by the Mode S beacon transponders on the aircraft and send them on to air traffic control facilities. In addition to its surveillance application, GPS-Squitter presents opportunities for enhancing other important functions such as collision avoidance systems and data link services. System tradeoff studies are comparing range and altitude coverage with the cost and number of stations needed. Other issues are data link interference, multipath, total aircraft capacity, and unambiguous reporting range. The baseline system uses commercial off-the-shelf components such as TCAS (Traffic Alerting and Collision Avoidance System) avionics units, omni-directional DME (Distance Measuring Equipment) antennas, and computer workstations in order to ensure low production costs. The cost/performance tradeoff of minimum modifications such as the addition of a 6-sector antenna, multiple receive channels, or higher transmit power, are being evaluated. The omni-directional baseline system is designed for a range of 50 nmi while the 6-sector system is designed for 100 nmi range. Two aircraft have been equipped with Mode S beacon transponders modified to broadcast (i.e., "squitter") their GPS position twice each second. The numerous test flights have accumulated a significant data base including a demonstration of coverage out to over 100 nmi range. Data have been collected to analyze a number of issues: received power margins, performance of bottom versus top aircraft antenna, ground bounce multipath, propagation over water, and parallel runway approach monitoring. In addition, standard squitter data from commercial aircraft have been recorded and correlated with Mode S tracking to show link margins experienced in practice from aircraft in operational service. More tests are planned, including a demonstration of GPS-Squitter air surveillance in the Gulf of Mexico.
READ LESS

Summary

Flight testing of a new air surveillance concept, GPS-Squitter, is reported. It integrates GPS receivers with the existing secondary surveillance radar beacon equipment carried by most aircraft. Simple, inexpensive, non-scanning ground stations listen for GPS position reports broadcast by the Mode S beacon transponders on the aircraft and send them...

READ MORE

Encoding approaches for data link transmission of weather graphics

Published in:
MIT Lincoln Laboratory Report ATC-205

Summary

To provide pilots with necessary information to make informed decisions on the avoidance of hazardous weather and to maintain situational awareness of the weather conditions, the FAA is actively developing the capability to provide real-time graphical weather information to aircraft through the use of bandwidth-limited data links such as Mode S. The information content of weather images and the restricted bandwidth of the transmission channel require that the images be extensively compressed. This paper provides the results of a study concerning the applicability of various data compression algorithms to the weather image problem. Its conclusion is that the Polygon-Ellipse Algorithm developed at Lincoln Laboratory provides the best combination of compression, computational efficiency, and image quality for the encoding of weather images over the Mode S data link or other similarly bit-limited data links.
READ LESS

Summary

To provide pilots with necessary information to make informed decisions on the avoidance of hazardous weather and to maintain situational awareness of the weather conditions, the FAA is actively developing the capability to provide real-time graphical weather information to aircraft through the use of bandwidth-limited data links such as Mode...

READ MORE

Machine Intelligent Gust Front Algorithm

Published in:
MIT Lincoln Laboratory Report ATC-196
Topic:

Summary

The Federal Aviation Administration has sponsored research and development of algorithms for automatic gust front detection as part of a suite of hazardous weather detection capabilities for airports. These algorithms are intended for use with Doppler radar systems, specifically the Terminal Doppler Weather Radar (TDWR) and the Airport Surveillance Radar enhanced with a Wind Shear Processor (ASR-9 WSP). Although gust fronts are observable with fairly reliable signatures in TDWR data, existing gust front detection algorithms have achieved only modest levels of detection performance. For smaller airports not slated to receive a dedicated TDWR, the ASR-9 WSP will provide a less expensive wind shear detection capability. Gust front detection in ASR-9 SP data is an even more difficult problem, given the reduced sensitivity and less reliable Doppler measurements of this radar. A Machine Intelligent Gust Front Algorithm (MIGFA) has been constructed at Lincoln Laboratory that is a radical departure from previous design strategies. Incorporating knowledge-based, signal-processing techniques initially developed at Lincoln Laboratory for automatic target recognition, MIGFA uses meterological knowledge, spatial and temporal context, conditional data fusion, delayed thresholding, and pixel-level fusion of evidence to improve gust front detection performance significantly. In tests comparing MIGFA with an existing state-of-the-art algorithm applied to ASR-9 WSP data, MIGFA has substantially outperformed the older algorithm. In fact, by some measures, MIGFA has done as well or better than human interpreters of the same data. Operational testing of this version was done during 1992 in Orlando, Florida. The desing, test results, and performance evaluation of hte ASR-9 WSP version of MIGFA are presented in this report, which was prepared as part of the documentation package for the ASR-9 WSP gust front algorithm.
READ LESS

Summary

The Federal Aviation Administration has sponsored research and development of algorithms for automatic gust front detection as part of a suite of hazardous weather detection capabilities for airports. These algorithms are intended for use with Doppler radar systems, specifically the Terminal Doppler Weather Radar (TDWR) and the Airport Surveillance Radar...

READ MORE

ADS-Mode S system overview

Published in:
AIAA/IEEE Digital Avionics Systems Conf., 25-28 October 1993, pp. 104-109.

Summary

ADS-Mode S is a system concept that merges the capabilities of Automatic Dependent Surveillance and the Mode S beacon radar. The result is an integrated system for seamless surveillance and data link that permits equipped aircraft to participate in ADS or beacon ground environments. This offers many possibilities for transitioning from a beacon to an ADS based surveillance system. The ADS-Mode S squitter. The current Mode S squitter is a spontaneous, periodic (once per second) 56-bit broadcast message containing the Mode S 24-bit address. This broadcast is provided by all Mode S transponders and is used by the Traffic Alert and Collision Avoidance System (TCAS) to acquire nearby Mode S equipped aircraft. For ADS-Mode S use, this squitter broadcast would be extended to 112 bits to provide for the transmission of a 56-bit ADS message field. The ADS squitter would be transmitted in addition to the current TCAS squitter in order to maintain compatibility with current TCAS equipment during transition.
READ LESS

Summary

ADS-Mode S is a system concept that merges the capabilities of Automatic Dependent Surveillance and the Mode S beacon radar. The result is an integrated system for seamless surveillance and data link that permits equipped aircraft to participate in ADS or beacon ground environments. This offers many possibilities for transitioning...

READ MORE

ADS-Mode S

Published in:
Proc. 38th Annual Air Traffic Control Association Convention, 24-28 October 1993, pp. 230-236.

Summary

The International Civil Aviation Organization (ICAO) has defined a concept for communications, navigation, and surveillance for the next century known as the Future Air Navigation System (FANS). A cornerstone, of the FANS is an increasing reliance on satellite-based position-determining systems such as the Global Positioning System (GPS). In the case of, surveillance, aircraft position information is automatically downlinked to ground controllers. This technique is known as Automatic Dependent Surveillance (ADS). ADS-Mode S is an ADS system concept utilizing the frequencies and formats of the Mode S system for downlinking position information and also uplinking differential GPS (DGPS) corrections. The result is an integrated concept for surveillance that permits aircraft equipped with a Mode S transponder and a GPS receiver to participate in both ADS and beacon ground environments. This makes possible a smooth transition of the National Airspace System (NAS) secondary surveillance system from a beacon-based to an ADS-based environment. In addition, several other benefits from ADS-Mode S accrue to the Traffic Alert and Collision Avoidance System (TCAS) and to the Mode S Data Link system.
READ LESS

Summary

The International Civil Aviation Organization (ICAO) has defined a concept for communications, navigation, and surveillance for the next century known as the Future Air Navigation System (FANS). A cornerstone, of the FANS is an increasing reliance on satellite-based position-determining systems such as the Global Positioning System (GPS). In the case...

READ MORE

ASR-9 Microburst Detection Algorithm

Published in:
MIT Lincoln Laboratory Report ATC-197

Summary

The ASR-9 Wind Shear Processor (WSP) is intended as an economical alternative for those airports that have not been slated to receive a Terminal Doppler Weather Radar (TDWR) but have, or will be receiving, an ASR-9 radar. Lincoln Laboratory has developed a prototype ASR-9 WSP system which has been demonstrated during the summer months of the past three year in Orlando, Florida. During the operational test period, microburst and gust front warnings, as well as storm motion indications, were provided to the Air Traffic Control in real time. The ASR-9 Microburst Detection Algorithm (AMDA) is based on the earlier TDWR Microburst Detection Algorithm but has been substantially modified to match better the particular strengths and weaknesses of the ASR-9 rapid-scanning fan-beam radar. The most significant additions included a capability to detect overhead microbursts, a reflectivity processing step used to help detect velocity signatures that have been biased by overhanging precipitation, and a modification to some of the shear segment grouping and thresholding parameters to accommodate better the typical on-air siting of the ASR-9. In addition, the AMDA has been designed to be as efficient as possible to allow it to run at the radar's 4.8 seconds/scan antennas rotation rate on a single-board computer. A detailed description of AMDA, as well as the performance evaluation strategy and results, are presented in this report.
READ LESS

Summary

The ASR-9 Wind Shear Processor (WSP) is intended as an economical alternative for those airports that have not been slated to receive a Terminal Doppler Weather Radar (TDWR) but have, or will be receiving, an ASR-9 radar. Lincoln Laboratory has developed a prototype ASR-9 WSP system which has been demonstrated...

READ MORE

The gust-front detection and wind-shift algorithms for the Terminal Doppler weather radar system

Published in:
J. Atmos. Ocean. Technol., Vol. 10, October 1993, pp. 693-709.

Summary

The Federal Aviation Administration's Terminal Doppler Weather Radar (TDWR) system was primarily designed to address the operational needs of pilots in the avoidance of low-altitude wind shears upon takeoff and landing at airports. One of the primary methods of wind-shear detection for the TDWR system is the gust-front detection algorithm. The algorithm is designed to detect gust fronts that produce a wind-shear hazard and/or sustained wind shifts. It serves the hazard warning function by providing an estimate of the wind-speed gain for aircraft penetrating the gust front. The gust-front detection and wind-shift algorithms together serve a planning function by providing forecasted gust-front locations and estimates of the horizontal wind vector behind the front, respectively. This information is used by air traffic managers to determine arrival and departure runway configurations and aircraft movements to minimize the impact of wind shifts on airport capacity. This paper describes the gust-front detection and wind-shift algorithms to be fielded in the initial TDWR systems. Results of a quantitative performance evaluation using Doppler radar data collected during TDWR operational demonstrations at the Denver, Kansas City, and Orlando airports are presented. The algorithms were found to be operationally useful by the FAA airport controllers and supervisors.
READ LESS

Summary

The Federal Aviation Administration's Terminal Doppler Weather Radar (TDWR) system was primarily designed to address the operational needs of pilots in the avoidance of low-altitude wind shears upon takeoff and landing at airports. One of the primary methods of wind-shear detection for the TDWR system is the gust-front detection algorithm...

READ MORE

Estimation of wake vortex advection and decay using meteorological sensors and aircraft data

Published in:
MIT Lincoln Laboratory Report ATC-201

Summary

The lift-generated wake vortices trailing behind an aircraft present a danger to aircraft following the same or nearby path. The degree of hazard to the following aircraft depends on the nature of the wake encountered in its flight path and on the ability of the aircraft to counter its effects. This report describes the current state of understanding of the factors that influence the motion and dissipation of wake vortices. The relationships of these factors to parameters that are measurable through meteorological sensors and from a priori knowledge of the vortex generating aircraft characteristics are discussed as an aid to structuring development plans for the creation of wake vortex advisory products by the Integrated Terminal Weather System (ITWS) and by special wake vortex sensors.
READ LESS

Summary

The lift-generated wake vortices trailing behind an aircraft present a danger to aircraft following the same or nearby path. The degree of hazard to the following aircraft depends on the nature of the wake encountered in its flight path and on the ability of the aircraft to counter its effects...

READ MORE