Publications
Tagged As
Compensating for mismatch in high-level speaker recognition
Summary
Summary
Speaker recognition using high-level features has been a successful area of exploration. Features obtained from many different levels phones, words, prosodic events, etc. are used to characterize the speaker. A good modeling technique for these features is the support vector machine (SVM). SVMs model the n-gram frequencies from speaker utterances...
Understanding scores in forensic speaker recognition
Summary
Summary
Recent work in forensic speaker recognition has introduced many new scoring methodologies. First, confidence scores (posterior probabilities) have become a useful method of presenting results to an analyst. The introduction of an objective measure of confidence score quality, the normalized cross entropy, has resulted in a systematic manner of evaluating...
The mixer and transcript reading corpora: resources for multilingual, crosschannel speaker recognition research
Summary
Summary
This paper describes the planning and creation of the Mixer and Transcript Reading corpora, their properties and yields, and reports on the lessons learned during their development.
SVM based speaker verification using a GMM supervector kernel and NAP variability compensation
Summary
Summary
Gaussian mixture models with universal backgrounds (UBMs) have become the standard method for speaker recognition. Typically, a speaker model is constructed by MAP adaptation of the means of the UBM. A GMM supervector is constructed by stacking the means of the adapted mixture components. A recent discovery is that latent...
Support vector machines using GMM supervectors for speaker verification
Summary
Summary
Gaussian mixture models (GMMs) have proven extremely successful for text-independent speaker recognition. The standard training method for GMMmodels is to use MAP adaptation of the means of the mixture components based on speech from a target speaker. Recent methods in compensation for speaker and channel variability have proposed the idea...
Support vector machines for speaker and language recognition
Summary
Summary
Support vector machines (SVMs) have proven to be a powerful technique for pattern classification. SVMs map inputs into a high-dimensional space and then separate classes with a hyperplane. A critical aspect of using SVMs successfully is the design of the inner product, the kernel, induced by the high dimensional mapping...
Exploiting nonacoustic sensors for speech encoding
Summary
Summary
The intelligibility of speech transmitted through low-rate coders is severely degraded when high levels of acoustic noise are present in the acoustic environment. Recent advances in nonacoustic sensors, including microwave radar, skin vibration, and bone conduction sensors, provide the exciting possibility of both glottal excitation and, more generally, vocal tract...
Speaker adaptive cohort selection for Tnorm in text-independent speaker verification
Summary
Summary
In this paper we discuss an extension to the widely used score normalization technique of test normalization (Tnorm) for text-independent speaker verification. A new method of speaker Adaptive-Tnorm that offers advantages over the standard Tnorm by adjusting the speaker set to the target model is presented. Examples of this improvement...
The 2004 MIT Lincoln Laboratory speaker recognition system
Summary
Summary
The MIT Lincoln Laboratory submission for the 2004 NIST Speaker Recognition Evaluation (SRE) was built upon seven core systems using speaker information from short-term acoustics, pitch and duration prosodic behavior, and phoneme and word usage. These different levels of information were modeled and classified using Gaussian Mixture Models, Support Vector...
Advances in channel compensation for SVM speaker recognition
Summary
Summary
Cross-channel degradation is one of the significant challenges facing speaker recognition systems. We study the problem for speaker recognition using support vector machines (SVMs). We perform channel compensation in SVM modeling by removing non-speaker nuisance dimensions in the SVM expansion space via projections. Training to remove these dimensions is accomplished...