Publications

Refine Results

(Filters Applied) Clear All

Safety analysis for advanced separation concepts

Published in:
USA/Europe Air Traffic Management Seminar, 27-30 June 2005.

Summary

Aviation planners have called for increasing the capacity of the air transportation system by factors of two or three over the next 20 years. The inherent spatial capacity of en route airspace appears able to accommodate such traffic densities. But controller workload presents a formidable obstacle to achieving such goals. New approaches to providing separation assurance are being investigated to overcome workload limitations and allow airspace capacity to be fully utilized. One approach is to employ computer automation as the basis for separation-assurance task. This would permit traffic densities that exceed the level at which human cognition and decision-making can assure separation. One of the challenges that must be faced involves the ability of such highly automated systems to maintain safety in the presence of inevitable subsystem faults, including the complete failure of the supporting computer system. Traffic density and flow complexity will make it impossible for human service providers to safely reinitiate manual control in the event of computer failure, so the automated system must have inherent fail-soft features. This paper presents a preliminary analysis of the ability of a highly automated separation assurance system to tolerate general types of faults such as nonconformance and computer outages. Safety-related design features are defined using the Advanced Airspace Concept (AAC) as the base architecture. Special attention is given to the impact of a severe failure in which all computer support is terminated within a defined region. The growth and decay of risk during an outage is evaluated using fault tree methods that integrate risk over time. It is shown that when a conflict free plan covers the region of the outage, this plan can be used to safely transition aircraft to regions where service can still be provided.
READ LESS

Summary

Aviation planners have called for increasing the capacity of the air transportation system by factors of two or three over the next 20 years. The inherent spatial capacity of en route airspace appears able to accommodate such traffic densities. But controller workload presents a formidable obstacle to achieving such goals...

READ MORE

Remotely piloted vehicles in civil airspace: requirements and analysis methods for the traffic alert and collision avoidance system (TCAS) and see-and-avoid systems

Published in:
Proc. of the 23rd Digital Avionics Systems Conf., DASC, Vol. 2, 24-28 October 2004, pp. 12.D.1-1 - 12.D.1.14.

Summary

The integration of Remotely Piloted Vehicles (RF'Vs) into civil airspace will require new methods of ensuring aircraft separation. This paper discusses issues affecting requirements for RPV traffic avoidance systems and for performing the safety evaluations that will be necessary to certify such systems. The paper outlines current ways in which traffic avoidance is assured depending on the type of airspace and type of traffic that is encountered. Alternative methods for RPVs to perform traffic avoidance are discussed, including the potential use of new see-and-avoid sensors or the Traffic Alert and Collision Avoidance System (TCAS). Finally, the paper outlines an established safety evaluation process that can be adapted to assure regulatory authorities that RPVs meet level of safety requirements.
READ LESS

Summary

The integration of Remotely Piloted Vehicles (RF'Vs) into civil airspace will require new methods of ensuring aircraft separation. This paper discusses issues affecting requirements for RPV traffic avoidance systems and for performing the safety evaluations that will be necessary to certify such systems. The paper outlines current ways in which...

READ MORE

Safety analysis process for the Traffic Alert and Collision Avoidance System (TCAS) and see-and-avoid systems on remotely piloted vehicles

Published in:
AIAA 3rd Unmanned-Unlimited Technical Conf., 20-23 September 2004, pp. 1-13.

Summary

The integration of Remotely Piloted Vehicles (RPVs) into civil airspace will require new methods of ensuring traffic avoidance. This paper discusses issues affecting requirements for RPV traffic avoidance systems and describes the safety evaluation process that the international community has deemed necessary to certify such systems. Alternative methods for RPVs to perform traffic avoidance are discussed, including the potential use of new see-and- avoid sensors or the Traffic Alert and Collision Avoidance System (TCAS). Concerns that must be addressed to allow the use of TCAS on RPVs are presented. The paper then details the safety evaluation process that is being implemented to evaluate the safety of TCAS on Global Hawk. The same evaluation process can be extended to other RPVs and traffic avoidance systems for which thorough safety analyses will also be required.
READ LESS

Summary

The integration of Remotely Piloted Vehicles (RPVs) into civil airspace will require new methods of ensuring traffic avoidance. This paper discusses issues affecting requirements for RPV traffic avoidance systems and describes the safety evaluation process that the international community has deemed necessary to certify such systems. Alternative methods for RPVs...

READ MORE

Modifications to ACAS safety study methods for remotely piloted vehicles (RPV)

Author:
Published in:
Int. Civil Aviation Organization Surveillance and Conflict Resolution Systems Panel Working Group, 3-7 May 2004.

Summary

Estimating the relative safety of a Remotely Piloted Vehicle (RPV) equipped with ACAS will require several extensions to the methods developed in previous ACAS studies. This paper outlines several of these redesign issues. First, it may be necessary to compute the probability that an RPV will experience a critical encounter relative to that for a conventional aircraft. Performing a safety study on only the incremental impact of equipping an RPV with ACAS would circumvent this need. Additionally, methods are proposed to adapt existing encounter models to better represent the likely characteristics of encounters with RPVs. Finally, modifications to the level of detail included in dynamic simulations and fault trees are discussed. It is proposed to shift all dynamic elements out of the fault tree and into a new more complex Monte Carlo simulation.
READ LESS

Summary

Estimating the relative safety of a Remotely Piloted Vehicle (RPV) equipped with ACAS will require several extensions to the methods developed in previous ACAS studies. This paper outlines several of these redesign issues. First, it may be necessary to compute the probability that an RPV will experience a critical encounter...

READ MORE

Adaptive doppler filtering applied to modern air traffic control radars

Published in:
Proc. of the IEEE 2004 Radar Conf., 26-29 April 2004, pp. 242-248.

Summary

This paper presents an analysis of the Doppler processing technology currently in use in the nation's terminal airport surveillance radars, and examines possibilities for performance improvement, particularly in the presence of moving clutter. The research focuses on five- and eight-pulse waveform methodologies and their respective detection capabilities given clearly defined rain clutter scenarios. Performance with fixed coefficient filters similar to those used in the existing radars is calculated, followed by performance using an adaptive Doppler filtering technique. Performance is quantified in terms of signal-to-interference ratio at the output of the Doppler filters and resultant probability of detection given a specified probability of false alarm. The results will show that a substantial improvement in detection in the vicinity of rain clutter is realized for both the five- and eight-pulse waveforms when using the adaptive coefficient Doppler filters as compared to the performance observed with the fixed coefficient filters. For constant filter weights, the eight-pulse Doppler filters give significantly better performance in most diverse rain clutter than the five-pulse Doppler filters.
READ LESS

Summary

This paper presents an analysis of the Doppler processing technology currently in use in the nation's terminal airport surveillance radars, and examines possibilities for performance improvement, particularly in the presence of moving clutter. The research focuses on five- and eight-pulse waveform methodologies and their respective detection capabilities given clearly defined...

READ MORE

ADS-B Airborne Measurements in Frankfurt

Published in:
21st AIAA/IEEE Digital Avionics Systems Conf., 27-31 October 2002, pp. 3.A.3-1 - 3.A.3-11.

Summary

Automatic Dependent Surveillance-Broadcast (ADS-B) was the subject of airborne testing in Frankfurt, Germany in May 2000. ADS-B is a system in which latitude-longitude information is broadcast regularly by aircraft, so that receivers on the ground and in other aircraft can determine the presence and accurate locations of the transmitting aircraft. In addition to the latitude and longitude, ADS-B transmissions include altitude, velocity, aircraft address, and a number of other items of optional information. The tests in Germany were aimed at assessing the performance of Mode S Extended Squitter, which is one of several possible implementations of ADS-B. Extended Squitter uses a conventional Mode S signal format, specifically the 112-bit reply format at 1090 MHz, currently being used operationally for air-to-ground communications and air-to-air coordination in TCAS (Traffic Alert and Collision Avoidance System).
READ LESS

Summary

Automatic Dependent Surveillance-Broadcast (ADS-B) was the subject of airborne testing in Frankfurt, Germany in May 2000. ADS-B is a system in which latitude-longitude information is broadcast regularly by aircraft, so that receivers on the ground and in other aircraft can determine the presence and accurate locations of the transmitting aircraft...

READ MORE

Validation techniques for ADS-B surveillance data

Published in:
21st DASC: Proc. of the Digital Avionics Systems Conf., Vol. 1, 27-31 October 2002, pp. 3.E.2-1 - 3.E.2-9.

Summary

Surveillance information forms the basis for providing traffic separation services by Air Traffic Control. The consequences of failures in the integrity and availability of surveillance data have been highlighted in near misses and more tragically, by midair collisions. Recognizing the importance and criticality of surveillance information, the U.S. Federal Aviation Administration (FAA) in common with most other Civil Aviation Authorities (CAAs) worldwide has implemented a surveillance architecture that emphasizes the independence of surveillance sources and the availability of crosschecks on all flight critical data. Automatic Dependent Surveillance Broadcast (ADS-B) changes this approach by combining the navigation and surveillance information into a single system element. ADS-B is a system within which individual aircraft distribute position estimates from onboard navigation equipment via a common communications channel. Any ADS-B receiver may then assemble a complete surveillance picture of nearby aircraft by listening to the common channel and combining the received surveillance reports with an onboard estimate of ownership position. This approach makes use of the increasing sophistication and affordability of navigation equipment (e.g. GPS-based avionics) to improve the accuracy and update rate of surveillance information. However, collapsing the surveillance and navigation systems into a common element increases the vulnerability of the system to erroneous information, both due to intentional and unintentional causes.
READ LESS

Summary

Surveillance information forms the basis for providing traffic separation services by Air Traffic Control. The consequences of failures in the integrity and availability of surveillance data have been highlighted in near misses and more tragically, by midair collisions. Recognizing the importance and criticality of surveillance information, the U.S. Federal Aviation...

READ MORE

Analysis and comparison of separation measurement errors in single sensor and multiple radar mosiac display terminal environments

Published in:
MIT Lincoln Laboratory Report ATC-306

Summary

This paper presents an analyis to estimate and characterize the errors in the measured separation distance between aircraft that are displayed on a radar screen to a controller in a single sensor terminal environment compared to a multiple radar mosiac terminal environment. The error in measured or displayed separation is the difference between the true separation or distance between aircraft in the air and the separation displayed to a controller on a radar screen. In order to eliminate as many variables as possible and to concentrate specifically on the differences between displayed separation errors in the two environments, for the purposes of this analysis, only full operation Mode S secondary beacon surveillance characteristics are considered. A summary of the Mode S secondary radar error sources and characteristics used to model the resultant errors in measured separation between aircraft in single and multi-radar terminal environments is presented. The analysis for average separation errors show that the performance of radars in providing separation services degrades with range. The analysis also shows that when using independent radars in a mosiac display, separation errors will increase, on average, compared to the performance when providing separation with a single radar. The data presented in the section on average separation errors is summarized by plotting the standard deviation of the separation error as a function of range for the single radar case and for the independent mosiac display case. The sections on typical and specific errors in separation measurements illustrate that the separation measurement errors are highly dependent on the geometry of the aircraft and radars. Applying average results to specific geometries can lead to counter intuitive results is illustrated in an example case presented in analysis.
READ LESS

Summary

This paper presents an analyis to estimate and characterize the errors in the measured separation distance between aircraft that are displayed on a radar screen to a controller in a single sensor terminal environment compared to a multiple radar mosiac terminal environment. The error in measured or displayed separation is...

READ MORE

COTS fusion tracker evaluation

Published in:
MIT Lincoln Laboratory Report ATC-302

Summary

Lincoln Laboratory was tasked by the FAA to measure the performance of a representative sample of current commercial off-the-shelf (COTS) fusion trackers. This effort included cataloging the companies that have available ATC fusion trackers, acquiring executable tracker images from as many as possible of these trackers, running the commercial tracker code on the test sets, and evaluating the performance achieved. This report presents an overall review of the state-of-the-art of fusion tracker as applied to the FAA surveillance problem. Average statistics of performance, as well as performance in special situations, are included. In each case, the performance of fusion is compared against the performance of single sensor and mosaic tracking. Thus, the advantages and disadvantages of fusion will be evident. The statistics may also permit the generation of a fusion tracker specification should the FAA decide to procure one as part of a future automation system.
READ LESS

Summary

Lincoln Laboratory was tasked by the FAA to measure the performance of a representative sample of current commercial off-the-shelf (COTS) fusion trackers. This effort included cataloging the companies that have available ATC fusion trackers, acquiring executable tracker images from as many as possible of these trackers, running the commercial tracker...

READ MORE

ASR-8/TDX-2000 performance analysis: evaluation of multiple-time-around-detection (MTAD) algorithm and final report

Published in:
MIT Lincoln Laboratory Report ATC-300

Summary

This report documents the analysis of and subsequent improvements to the performance of the ASR-8/TDX-2000 digitizer equipment combination. Working at the FAA's Palm Springs, CA and Williams (Mesa, AZ) ASR-8 facilities, data was methodically collected and analyzed to isolate the causes of reported correlated radar-only tracks that were being dropped or were never initiated. These problems were subsequently fixed via hard and soft parameter changes in the TDX-2000. A significant study was also undertaken in conjunction with the Sensis Corporation to improve the TDX-2000's capability to reject returns from multiple-time-around detections. The details of that algorithm modification and the results of follow-on testing and analysis are described. Final conclusions on the status of the project are also included.
READ LESS

Summary

This report documents the analysis of and subsequent improvements to the performance of the ASR-8/TDX-2000 digitizer equipment combination. Working at the FAA's Palm Springs, CA and Williams (Mesa, AZ) ASR-8 facilities, data was methodically collected and analyzed to isolate the causes of reported correlated radar-only tracks that were being dropped...

READ MORE