Publications

Refine Results

(Filters Applied) Clear All

FAA tactical weather forecasting in the United States National Airspace

Published in:
World Weather Research Program Symp. on Nowcasting and Very Short Term Forecasts, 5-9 September 2005.

Summary

This paper describes the Tactical 0-2 hour Convective Weather Forecast (CWF) algorithm developed by the MIT LL for the FAA. We will address the algorithm and focus on the key scientific developments. Future directions will also be discussed.
READ LESS

Summary

This paper describes the Tactical 0-2 hour Convective Weather Forecast (CWF) algorithm developed by the MIT LL for the FAA. We will address the algorithm and focus on the key scientific developments. Future directions will also be discussed.

READ MORE

Automated extraction of weather variables from camera imagery

Published in:
Proc. of 2005 Mid-Continent Transportation Research Symp., 18-19 August 2005.

Summary

Thousands of traffic and safety monitoring cameras are deployed or are being deployed all across the country and throughout the world. These cameras serve a wide range of uses from monitoring building access to adjusting timing cycles of traffic lights at clogged intersections. Currently, these images are typically viewed on a wall of monitors in a traffic operations or security center where observers manually monitor potentially hazardous or congested conditions and notify the appropriate authorities. However, the proliferation of camera imagery taxes the ability of the manual observer to track and respond to all incidents. In addition, the images contain a wealth of information, including visibility, precipitation type, road conditions, camera outages, etc., that often goes unreported because these variables are not always critical or go undetected. Camera deployments continue to expand and the corresponding rapid increases in both the volume and complexity of camera imagery demand that automated algorithms be developed to condense the discernable information into a form that can be easily used operationally by users. MIT Lincoln Laboratory (MIT/LL) under funding from the Federal Highway Administration (FHWA) is investigating new techniques to extract weather and road condition parameters from standard traffic camera imagery. To date, work has focused on developing an algorithm to measure atmospheric visibility and prove the algorithm concept. The initial algorithm examines the natural edges within the image (the horizon, tree lines, roadways, permanent buildings, etc) and performs a comparison of each image with a historical composite image. This comparison enables the system to determine the visibility in the direction of the sensor by detecting which edges are visible and which are not. A primary goal of the automated camera imagery feature extraction system is to ingest digital imagery with limited specific site information such as location, height, angle, and visual extent, thereby making the system easier for users to implement. There are, of course, many challenges in providing a reliable automated estimate of the visibility under all conditions (camera blockage/movement, dirt/raindrops on lens, etc) and the system attempts to compensate for these situations. This paper details the work-to-date on the visibility algorithm and defines a path for further development of the overall system.
READ LESS

Summary

Thousands of traffic and safety monitoring cameras are deployed or are being deployed all across the country and throughout the world. These cameras serve a wide range of uses from monitoring building access to adjusting timing cycles of traffic lights at clogged intersections. Currently, these images are typically viewed on...

READ MORE

Description of the Corridor Integrated Weather System (CIWS) weather products

Published in:
MIT Lincoln Laboratory Report ATC-317

Summary

Improved handling of severe en route and terminal convective weather has been identified by the FAA in both the Operational Evolution Plan (OEP) (FAA, 2002) and the Flight Plan for 2004-2008 (FAA, 2003) as a major thrust over the coming decade for the National Airspace System (NAS) modernization. Achieving such improved capabilities is particularly important in highly congested corridors where there is both a high density of over flights and major terminals. Delay increases during thunderstorm season have been the principal cause of the dramatic delay growth in the US aviation system. When major terminals also underlie the en route airspace, convective weather has even greater adverse impacts, especially if the convective weather occurs frequently. In response to the need to enhance both safety and capacity during adverse weather, the FAA is exploring the concept of a Corridor Integrated Weather System (CIWS). CIWS is designed to improve convective weather decision support for congested en route airspace (and the terminals that lie under that airspace) by automatically generating graphical depictions of the current severe weather situation and providing frequently updated forecasts of the future weather locations for forecast times from zero to two hours. An operational demonstration of the CIWS was conducted during the summer of 2003. This document provides a detailed description of each CIWS weather information product as it was demonstrated in 2003, including a general description of the product, what data sources are used by the product, how the product is generated from the input data, and what caveats in the technical performance apply. A discussion of how the products might be used to enhance safety and support decision-making for traffic management is also included. Detailed information on the operational benefits of the CIWS products demonstrated in 2003 is provided in a companion report (Robinson et al., 2004). Improvements made to the products for the 2004 and 2005 CIWS operational demonstrations are briefly discussed in the final chapter.
READ LESS

Summary

Improved handling of severe en route and terminal convective weather has been identified by the FAA in both the Operational Evolution Plan (OEP) (FAA, 2002) and the Flight Plan for 2004-2008 (FAA, 2003) as a major thrust over the coming decade for the National Airspace System (NAS) modernization. Achieving such...

READ MORE

Operational benefits of the Integrated Terminal Weather System (ITWS) at Atlanta

Author:
Published in:
MIT Lincoln Laboratory Report ATC-320

Summary

This report summarizes the results of an initial study to estimate the yearly delay reduction provided by the initial operational capability (IOC) Integrated Terminal Weather System (ITWS) at Hartsfield-Jackson Atlanta International Airport (ATL). Specific objectives of this initial study were to: (1) analyze convective weather operations at ATL to determine major causes of convective weather delay and how those might be modeled quantitatively. (2) provide estimates of the ATL ITWS delay reduction based on the "Decision/Modeling" method using questionnaires and interviews with Atlanta Terminal Radar Approach Control (TRACON) and Air Route Traffic Control Center (ARTCC) operational ITWS users. (3)assess the "reasonableness" of the model-based delay reduction estimates by comparing those savings with estimates of the actual weather-related arrival delays at ATL. In addition, the reasonableness of model-based delay reduction estimates was assessed by determining the average delay savings per ATL flight during times when adverse convective weather is within the coverage of the ATL ITWS. (4)conduct an exploratory study confirming the ATL ITWS delay savings by comparing Aviation System Performance Metrics (ASPM) database delays pre- and post-ITWS at ATL. (5) assess the accuracy of the "downstream" delay model employed in this study by analyzing ASPM data from a major US airline, and (6) make recommendations for follow-on studies of the ITWS delay reduction at Atlanta and other IOC ITWS facilities. [not complete]
READ LESS

Summary

This report summarizes the results of an initial study to estimate the yearly delay reduction provided by the initial operational capability (IOC) Integrated Terminal Weather System (ITWS) at Hartsfield-Jackson Atlanta International Airport (ATL). Specific objectives of this initial study were to: (1) analyze convective weather operations at ATL to determine...

READ MORE

Quantifying convective delay reduction benefits for weather/ATM systems

Published in:
USA/Europe Air Traffic Management Seminar, 27-30 June 2005.

Summary

This paper investigates methods for quantifying convective weather delay reduction benefits for weather/ATM systems and recommends approaches for future assessments. This topic is particularly important at this time because: 1. Convective weather delays continue to be a dominant factor in the overall National Airspace System (NAS) delays, and 2. Benefits quantification and NAS performance assessment have become very important in an era of significant government and airline budget constraints for civil aviation investments. Quantifying convective weather delay benefits for ATM systems has proven to be quite difficult since the delays arise from complicated, highly variable, poorly understood interactions between convective weather and a very complex aviation system. In this paper, we consider key aspects of convective weather disruptions of the aviation system, how the weather severity can be characterized, and discuss practical experience with benefits quantification by a variety of approaches. The paper concludes with recommendations for a methodology to be used in future convective weather delay reduction quantification studies.
READ LESS

Summary

This paper investigates methods for quantifying convective weather delay reduction benefits for weather/ATM systems and recommends approaches for future assessments. This topic is particularly important at this time because: 1. Convective weather delays continue to be a dominant factor in the overall National Airspace System (NAS) delays, and 2. Benefits...

READ MORE

Multi-PRI signal processing for the terminal Doppler weather radar, part I: clutter filtering

Author:
Published in:
J. Atmos. Ocean. Technol., Vol. 22, May 2005, pp. 575-582.

Summary

Multiple pulse repetition interval (multi-PRI) transmission is part of an adaptive signal transmission and processing algorithm being developed to aggressively combat range-velocity ambiguity in weather radars. In the past, operational use of multi-PRI pulse trains has been hampered due to the difficulty in clutter filtering. This paper presents finite impulse response clutter filter designs for multi-PRI signals with excellent magnitude and phase responses. These filters provide strong suppression for use on low-elevation scans and yield low biases of velocity estimates so that accurate velocity dealiasing is possible. Specifically, the filters are designed for use in the Terminal Doppler Weather Radar (TDWR) and are shown to meet base data bias requirements equivalent to the Federal Aviation Administration's specifications for the current TDWR clutter filters. Also an adaptive filter selection algorithm is proposed that bases its decision on clutter power estimated during an initial long-PRI surveillance scan. Simulations show that this adaptive algorithm yields satisfactory biases for reflectivity, velocity, and spectral width. Implementation of such a scheme would enable automatic elimination of anomalous propagation signals and constant adjustment to evolving ground clutter conditions, an improvement over the current TDWR clutter filtering system.
READ LESS

Summary

Multiple pulse repetition interval (multi-PRI) transmission is part of an adaptive signal transmission and processing algorithm being developed to aggressively combat range-velocity ambiguity in weather radars. In the past, operational use of multi-PRI pulse trains has been hampered due to the difficulty in clutter filtering. This paper presents finite impulse...

READ MORE

An analysis of wake vortex lidar measurements at LaGuardia Airport

Author:
Published in:
Project Report ATC-318, MIT Lincoln Laboratory

Summary

The majority of research into the wake vortex hazard has concentrated on the in-trail encounter scenario for arrivals. At LaGuardia Airport, wake vortex spacings are applied to arrivals on runway 22 following a heavy departure on the intersecting runway 31, resulting in delay and increased workload for controllers. Previous analysis of this problem led to a recommendation for a measurement campaign to collect data on the behavior of wake vortices generated by departing heavy aircraft. In April of 2004, MIT Lincoln Laboratory deployed its wake vortex lidar system to measure such wakes at LaGuardia. Additionally, wind speed and turbulence data were collected with the hope of correlating wake behavior with the local atmospheric conditions. Analysis of the lidar data indicates that the system was able to acquire and track vortices from departures, a task not proven prior to this deployment. Further, vortices were seen to transport toward the threshold of runway 22, verifying an assumption based on analysis of the winds that wake transport is not a solution in this case. The quantity and type of data collected were insufficient to formulate a clear relationship between atmospheric turbulence and vortex decay. However, it may be possible to develop such a model by exploiting the data gathered during previous lidar deployments.
READ LESS

Summary

The majority of research into the wake vortex hazard has concentrated on the in-trail encounter scenario for arrivals. At LaGuardia Airport, wake vortex spacings are applied to arrivals on runway 22 following a heavy departure on the intersecting runway 31, resulting in delay and increased workload for controllers. Previous analysis...

READ MORE

Improved range-velocity ambiguity mitigation for the Terminal Doppler Weather Radar

Published in:
11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

The Terminal Doppler Weather Radar (TDWR) radar data acquisition (RDA) subsystem is being replaced as part of a broader FAA program to improve the supportability of the system. An engineering prototype RDA has been developed with a scalable, open-systems hardware platform. With the dramatically increased computing power and more flexible transmitter control, modern signal processing algorithms can be implemented to improve the quality of the base data. Nation-wide, the most serious data quality challenge is range-velocity (RV) ambiguity. In a previous study (Cho et al., 2003) we showed that multiple pulse repetition interval (PRI) and constant-PRI phase-code processing have complementary strengths with respect to range-fold protection, and pro-posed an adaptive waveform and processing selection scheme on a radial-by-radial basis. Here we describe the scheme and give more details about the clutter filtering and velocity dealiasing algorithms to be used on the two types of signals.
READ LESS

Summary

The Terminal Doppler Weather Radar (TDWR) radar data acquisition (RDA) subsystem is being replaced as part of a broader FAA program to improve the supportability of the system. An engineering prototype RDA has been developed with a scalable, open-systems hardware platform. With the dramatically increased computing power and more flexible...

READ MORE

Advanced terminal weather products demonstration in New York

Published in:
Proc. 11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

Weather continues to be a significant source of delay for aircraft destined to and departing from the New York metropolitan area, with weather delays through the first half of 2004 reaching levels not seen since 2000. In Allan et al. (2001), it was shown that total arrival delays on days with low ceiling and visibility at Newark Airport (EWR) averaged 210 hours, increasing to an average of 280 hours on days with thunderstorms impacting EWR operations. An analysis of Ground Delay Programs (GDPs) due to weather in the National Airspace System was performed for 2002-20031. Low ceilings, thunderstorms, snow, and wind were all shown to be significant sources of delay (Figure 1). These same weather conditions that lead to GDPs often also lead to holding and long departure delays. In 1998, demonstration of a prototype Integrated Terminal Weather System (ITWS) began in the New York area, helping significantly reduce terminal delays from convection, high surface winds, and vertical wind shear (Allan et al., 2001). In 2002, a new demonstration system, the Corridor Integrated Weather System (CIWS), was introduced at New York Center (ZNY) to help mitigate convective weather delays in the enroute airspace. Substantial benefits were realized from this system and are documented in Robinson et al. (2004). While systems such as ITWS and CIWS have helped significantly with convective weather, much has been learned during the field-testing of these systems about areas where existing research and technology could be leveraged to reduce weather delay in areas that have not been addressed previously. This paper will discuss four experimental products that recently have been or will be fielded in the NY area and how they are expected to benefit the aviation system. Enhancements to the Terminal Convective Weather Forecast (TCWF) address delays in convective weather, snowstorms, and steady rain. The newly fielded Route Availability Planning Tool (RAPT) addresses departure delays in convective weather. The Ceiling and Visibility (C&V) Diagnosis and Prediction Product will address delay due to low ceiling and visibility. The Path-Based Shear Detection (PSD) tool is expected to help both to reduce delays on days with high winds and to indicate regions of potential low altitude turbulence.
READ LESS

Summary

Weather continues to be a significant source of delay for aircraft destined to and departing from the New York metropolitan area, with weather delays through the first half of 2004 reaching levels not seen since 2000. In Allan et al. (2001), it was shown that total arrival delays on days...

READ MORE

Commercial aviation encounters with severe low altitude turbulence

Published in:
11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

Turbulence encounters continue to be one of the largest sources of personal injury in both commercial and general aviation. A significant percentage of these encounters occur without warning, at low altitudes, and have been observed to occur outside of the strong reflectivity storm cores where pilots typically anticipate severe wind shear and/or turbulence. In this paper, statistics illustrating the altitude distributions of specific turbulence encounters are presented. These results suggest that a significant percentage of the moderate and greater turbulence encounters occur at low altitudes. One particularly dangerous form of low altitude turbulence, often associated with convective storms, is the buoyancy wave (BW). Observational evidence of commercial airline encounters with these phenomena indicates that they can cause an impairment of aircraft control that results in significant attitude and altitude fluctuations. Over the past two years several serious aircraft incidents involving low altitude turbulence have been reported. In our investigation of the meteorological conditions surrounding these incidents, there are strong indications that buoyancy waves played a major role in initiating the turbulence. While encounters with this type of buoyancy wave-induced turbulence can be as severe as microburst wind shear encounters, they are typically not detected by current wind shear detection systems. However, these phenomena do have detectable signatures. We suggest two modifications to existing wind shear detection systems that would make it possible to detect these potentially dangerous phenomena.
READ LESS

Summary

Turbulence encounters continue to be one of the largest sources of personal injury in both commercial and general aviation. A significant percentage of these encounters occur without warning, at low altitudes, and have been observed to occur outside of the strong reflectivity storm cores where pilots typically anticipate severe wind...

READ MORE