Publications
Digital pixel CMOS focal plane array with on-chip multiply accumulate units for low-latency image processing
Summary
Summary
A digital pixel CMOS focal plane array has been developed to enable low latency implementations of image processing systems such as centroid trackers, Shack-Hartman wavefront sensors, and Fitts correlation trackers through the use of in-pixel digital signal processing (DSP) and generic parallel pipelined multiply accumulate (MAC) units. Light intensity digitization...
Impact ionization in AlxGa1-xASySb1-y avalanche photodiodes
Summary
Summary
Avalanche photodiodes (APDs) have been fabricated in order to determine the impact ionization coefficients of electrons (alpha) and holes (beta) in AlxGa1-xAsySb1-y lattice matched to GaSb for three alloy compositions: (x=0.40, y=0.035), (x=0.55, y=0.045), and (x=0.65, y=0.054). The impact ionization coefficients were calculated from photomultiplication measurements made on specially designed...
High-sensitivity detection of trace gases using dynamic photoacoustic spectroscopy
Summary
Summary
Lincoln Laboratory of Massachusetts Institute of Technology has developed a technique known as dynamic photoacoustic spectroscopy (DPAS) that could enable remote detection of trace gases via a field-portable laser-based system. A fielded DPAS system has the potential to enable rapid, early warning of airborne chemical threats. DPAS is a new...
Adaptive RF canceller for transmit-receive isolation improvement
Summary
Summary
For effective operation, Simultaneous Transmit and Receive (STAR) systems require high isolation between the transmitted signals and the receiver input, the absence of which can lead to the saturation of a receiver's front end. This paper presents an adaptive RF canceller used to improve isolation. The canceller is configured as...
Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range
Summary
Summary
We present measurements of trapped-ion motional-state heating rates in niobium and gold surface-electrode ion traps over a range of trap-electrode temperatures from approximately 4 K to room temperature (295 K) in a single apparatus. Using the sideband-ratio technique after resolved-sideband cooling of single ions to the motional ground state, we...
A frequency selective atom interferometer magnetometer
Summary
Summary
In this article, we discuss the magnetic-field frequency selectivity of a time-domain interferometer based on the number and timing of intermediate pi pulses. We theoretically show that by adjusting the number of pi pulses and the pi-pulse timing, we can control the frequency selectivity of the interferometer to time varying...
Quantum information processing using quasiclassical electromagnetic interactions between qubits and electrical resonators
Summary
Summary
Electrical resonators are widely used in quantum information processing, by engineering an electromagnetic interaction with qubits based on real or virtual exchange of microwave photons. This interaction relies on strong coupling between the qubits' transition dipole moments and the vacuum fluctuations of the resonator in the same manner as cavity...
Reagent assessment for detection of ammonium ion-molecule complexes
Summary
Summary
An MS-based framework was developed to quantitatively assess API ion-molecule reagent chemistries based on ammonium selectivity versus competing ions, and intrinsic ammonium binding strength and complex survivability for detection. Methyl acetoacetate is an attractive ammonium reagent for vapor-phase API techniques given its high vapor pressure, preferential selectivity, and high critical...
Ultrawideband superstrate-enhanced substrate-loaded array with integrated feed
Summary
Summary
A superstrate-enhanced substrate-loaded array (SESLA) with an integrated feed is presented. The design allows for a practical implementation of the SESLA, a concept previously presented by the authors for realizing extremely wideband (> 10 : 1) low-profile arrays. Specifically, the feed provides unbalanced to balanced transformation allowing the balance-fed SESLA...
Flux-charge duality and topological quantum phase fluctuations in quasi-one-dimensional superconductors
Summary
Summary
It has long been thought that macroscopic phase coherence breaks down in effectively lower-dimensional superconducting systems even at zero temperature due to enhanced topological quantum phase fluctuations. In quasi-one-dimensional wires, these fluctuations are described in terms of 'quantum phase-slip' (QPS): tunneling of the superconducting order parameter for the wire between...