Publications
Experimental examination of the benefits of improved terminal air traffic control planning
Summary
Summary
Airport capacity can be improved significantly-by precisely controlling the sequence and timing of traffic flow-even when airspace usage and procedures remain fixed. In a preliminary experiment, a plan for such sequencing and timing was applied in a simulation to a 70-min traffic sample observed at Boston's Logan Airport, and the...
Multisensor surveillance for improved aircraft tracking
Summary
Summary
Cross-range measurements of aircraft travelling at distances of 50 to 200 miles include significant errors. Therefore, heading estimates for medium-to-long-range aircraft are not sufficiently accurate to be useful in conflict-detection predictions. Accurate crossrange measurements can be made-by using two or more sensors to measure aircraft position-but such measurements must compensate...
Parallel runway monitor
Summary
Summary
The availability of simultaneous independent approaches to parallel runways significantly enhances airport capacity. Current FAA procedures permit independent approaches in instrument meteorological conditions (IMC) when the parallel runways are spaced at least 4,300 ft apart. Arriving aircraft must be dependently sequenced at airports that have parallel runways separated by less...
Propagation of mode S beacon signals on the airport surface
Summary
Summary
Many airports across the United States will soon be equipped with Mode S, a next generation beacon (or secondary) radar system. One feature of Mode S is that it provides a data link between airborne aircraft and air traffic controllers. If Mode S could be used to communicate with aircraft...
TCAS: a system for preventing midair collisions
Summary
Summary
To reduce the possibility of midair collisions, the Federal Aviation Administration has developed the Traffic Alert and Collision Avoidance System, or TCAS. This airborne system senses the presence of nearby aircraft by interrogating the transponders carried by these aircraft. When TCAS senses that a nearby aircraft is a possible collision...
Using aircraft radar tracks to estimate winds aloft
Summary
Summary
In air traffic control, the wind is a critical factor because it affects, among other important variables, the amount of time an aircraft will take to reach its destination. The authors have developed a method for estimating winds aloft in which the radar tracks of aircraft are used; i.e., data...
The mode S beacon radar system
Summary
Summary
Air traffic controllers rely on primary and secondary radars to locate and identify aircraft. Secondary, or beacon, radars require aircraft to carry devices called transponders that enhance surveillance echoes and provide data links. Airports currently use a secondary-radar system known as the Air Traffic Control Radar Beacon System (ATCRBS). However...
TDWR Scan Strategy Requirements
Summary
Terminal Doppler Weather Radar (TDWR). The report in divided into three main sections:
rationale, example scan strategy and requirements. The rationale for the TDWR scanstrategy
is presented in terms of 1) detection of meteorological phenomena, and 2) minimization of
range and velocity folding effects. Next, an example is provided based on an experimental scan
strategy used in Denver during the summer of 1987. Finally, the requirements for the TDWR
scan strategy are presented based on the preceding discussion. Also, an appendix is included describing the proposed criteria for switching between scan modes.
Summary
This report describes the requirements for the wan s+rategy to be employed M the
Terminal Doppler Weather Radar (TDWR). The report in divided into three main sections:
rationale, example scan strategy and requirements. The rationale for the TDWR scanstrategy
is presented in terms of 1) detection of meteorological phenomena, and...
Airport surface traffic automation study
Summary
Summary
This report documents a study of requirements for an Airport Surface Traffic Automation (ASTA) system. The objective was to determine the necessary functions, establish the cost and benefits, and outline a modular system design. The highest priority function identified was an improved surface surveillance and communication system. The greatest potential...
Surveillance processing in the Mode S sensor
Summary
Summary
The principal function of the Mode S sensor (1), an evolutionary upgrade to the current ATCRBS (Air Traffic Control Radar Beacon System) sensor, is the output of one reportper aircraft per antenna scan. This report contains the current aircraft position (range and azimuth), the identity code of its transponder, and...