Publications
Use of clutter residue editing maps during the Denver 1988 Terminal Doppler Weather Radar (TDWR) tests
Summary
Summary
The Lincoln Laboratory Terminal Doppler Weather Radar (TDWR) testbed operated in Denver, CO in 1987-88. This radar is a prototype of the wind shear detection radars scheduled to be installed by the FAA to provide warnings of possibly hazardous wind shear conditions in airport terminal areas. To obtain the required...
A case study of the 24 August 1986, FLOWS microburst
Summary
Summary
From 1984 to 1986, Lincoln Laboratory under the sponsorship of the Federal Aviation Administration (FAA) collected wind shear measurements in the southeastern United States using a pulsed Doppler radar. The major emphasis of the measurement program and subsequent analyses is the development and testing of algorithms that will enable the...
Development of an automated windshear detection system using doppler weather radar
Summary
Summary
The US Federal Aviation Administration (FAA) is developing the Terminal Doppler Weather Radar (TDWR) system to determine the location and severity of LAWS (low-altitude windshear) phenomena and other weather hazards (e.g. tornadoes and turbulence) and to provide the pertinent information to real-time air traffic control users. The FAA program for...
The relationship between lightning type and convective state of thunderclouds
Summary
Summary
Thunderstorm case studies and earlier observations are described which illuminate the relationship between cloud vertical development and the prevalence of intracloud (IC) and cloud-to-ground (CG) lightning. A consistent temporal evolution starting with peak IC activity changing to predominant CG activity and concluding with strong outflow (microburst) suggests that ice is...
Mode S Beacon System: a functional overview
Summary
Summary
This document provides a functional overview of the Mode S Beacon System, a combined secondary surveillance radar (beacon) and ground-air-ground data link system capable of providing the aircraft surveillance and communications necessary to support ATC automation in future traffic environments. Mode S is capable of common-channel interoperation with the current...
Microburst detection with airport surveillance radars
Summary
Summary
With the advent of fully digital signal processing for new airport surveillance radars (ASR-9), terminal air traffic control displays will be largely free of clutter from precipitation and ground scatterers [1,2]. Early acceptance testing of the ASR-9, however, indicated that working air traffic controllers actually made considerable use of the...
The effectiveness of adaptive PRF selection in minimizing range obscuration in the TDWR system
Summary
Summary
An adaptive procedure for selecting radar pulse repetition frequency (PRF) has been developed as the primary means of minimizing the occurence of range aliased echoes within operationaly significant coverage aread (e.g., airport runways) of the Terminal Doppler Weather Radar (TDWR) system. This procedure underwent extensive testing at the S-Band TDWR...
Dual-beam autocorrelation based wind estimates from airport surveillance radar signals
Summary
Summary
This report describes an efficient, autocorrelation based algorithm for estimating low altitude radial winds using signals from the two receiving beams of an airport surveillance radar (ASR). The approach seeks to achieve the accuracy demonstrated previously for spectral domain dual beam velocity estimators with significantly reduced computational requirements. Fundamental to...
ASR-9 weather channel test report
Summary
Summary
The ASR-9, the next generation airport surveillance radar, will be deployed by the FAA at over 100 locations throughout the United States. The system includes a weather channel designed to provide ATC personnel with timely and accurate weather reflectivity information as a supplement to normal aircraft information. This report presents...
ASR-9 weather channel test report, executive summary
Summary
Summary
The ASR-9, the next generation Airport surveillance radar, will be deployed by the FAA at over 100 locations throughout the United States. The system includes a weather channel designed to provide ATC personnel with timely and accurate weather reflectivity information as a supplement to normal aircraft information. Comparisons between data...